This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127648 #56 Jun 09 2025 21:07:44 %S A127648 1,0,2,0,0,3,0,0,0,4,0,0,0,0,5,0,0,0,0,0,6,0,0,0,0,0,0,7,0,0,0,0,0,0, %T A127648 0,8,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,11,0, %U A127648 0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15 %N A127648 Triangle read by rows: row n consists of n zeros followed by n+1. %C A127648 Alternatively, a(n) = k if n+1 is the k-th triangular number and 0 otherwise. %C A127648 Triangle T(n,k), 0<=k<=n, read by rows, given by (0,0,0,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 27 2011 %H A127648 Antti Karttunen, <a href="/A127648/b127648.txt">Rows n = 0..360 of the triangle, flattened</a> (Rows n = 0..100 from G. C. Greubel) %F A127648 Infinite lower triangular matrix with (1, 2, 3, ...) in the main diagonal and the rest zeros. %F A127648 This sequence * A007318 (Pascal's Triangle) = A003506. %F A127648 A007318 * this sequence = A103406. %F A127648 G.f.: 1/(x*y-1)^2. - _R. J. Mathar_, Aug 11 2015 %F A127648 a(n) = (1/2) (round(sqrt(4 + 2 n)) - round(sqrt(2 + 2 n))) (-1 + round(sqrt(2 + 2 n)) + round(sqrt(4 + 2 n))). - _Brian Tenneson_, Jan 27 2017 %F A127648 From _G. C. Greubel_, Mar 13 2024: (Start) %F A127648 T(n, n) = n+1. %F A127648 Sum_{k=0..n} T(n, k) = n+1. %F A127648 Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*(n+1). %F A127648 Sum_{k=0..floor(n/2)} T(n-k, k) = A142150(n+2). %F A127648 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A142150(n+2). (End) %e A127648 First few rows of the triangle: %e A127648 1; %e A127648 0, 2; %e A127648 0, 0, 3; %e A127648 0, 0, 0, 4; %e A127648 0, 0, 0, 0, 5; %e A127648 0, 0, 0, 0, 0, 6; %e A127648 0, 0, 0, 0, 0, 0, 7; %e A127648 ... %p A127648 A127648 := proc(n) %p A127648 for i from 0 do %p A127648 if A000217(i) = n+1 then %p A127648 return i ; %p A127648 elif A000217(i) >n then %p A127648 return 0 ; %p A127648 end if; %p A127648 end do; %p A127648 end proc: # _R. J. Mathar_, Apr 23 2013 %t A127648 Flatten[Table[{n,Table[0,{n}]},{n,15}]] (* _Harvey P. Dale_, Jul 27 2011 *) %o A127648 (Haskell) %o A127648 a127648 n k = a127648_tabl !! n !! k %o A127648 a127648_row n = a127648_tabl !! n %o A127648 a127648_tabl = map reverse $ iterate (\(x:xs) -> x + 1 : 0 : xs) [1] %o A127648 a127648_list = concat a127648_tabl %o A127648 -- _Reinhard Zumkeller_, Jul 13 2013 %o A127648 (Python) %o A127648 for i in range(1,15): %o A127648 print(i, end=", ") %o A127648 for j in range(i): %o A127648 print("0", end=", ") # _Mohammad Saleh Dinparvar_, May 11 2020 %o A127648 (Python) %o A127648 from math import isqrt %o A127648 from sympy.ntheory.primetest import is_square %o A127648 def A127648(n): return (m:=isqrt(k:=n<<1))+(k>m*(m+1)) if is_square((n<<3)+1) else 0 # _Chai Wah Wu_, Jun 09 2025 %o A127648 (Magma) [k eq n select n+1 else 0: k in [0..n], n in [0..20]]; // _G. C. Greubel_, Mar 12 2024 %o A127648 (SageMath) %o A127648 def A127648(n): return (sqrt(9+8*n)-1)//2 if ((sqrt(9+8*n)-3)/2).is_integer() else 0 %o A127648 [A127648(n) for n in range(153)] # _G. C. Greubel_, Mar 12 2024 %o A127648 (PARI) A127648(n) = if(ispolygonal(1+n,3), (sqrtint(1+((1+n)*8))-1)/2, 0); \\ _Antti Karttunen_, Jan 19 2025 %Y A127648 Cf. A003506, A007318, A084938, A010054, A103406, A142150. %K A127648 nonn,easy,tabl %O A127648 0,3 %A A127648 _Gary W. Adamson_, Jan 22 2007