cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.

This page as a plain text file.
%I A127652 #8 Jun 07 2023 11:02:41
%S A127652 25,28,36,40,50,68,70,74,94,95,98,116,119,134,142,143,154,162,170,175,
%T A127652 182,189,190,200,220,226,242,245,262,273
%N A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.
%C A127652 Here the length of an aliquot sequence is defined to be the length of the transient part of its trajectory + the length of its terminal cycle.
%D A127652 Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
%D A127652 Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.
%H A127652 Manuel Benito and Juan L. Varona, <a href="https://doi.org/10.1090/S0025-5718-99-00991-6">Advances In Aliquot Sequences</a>, Mathematics of Computation, Vol. 68, No. 225, (1999), pp. 389-393.
%H A127652 Wolfgang Creyaufmueller, <a href="http://www.aliquot.de/aliquote.htm">Aliquot Sequences</a>.
%F A127652 Sequence gives those values of n for which A097032(n)>A098007(n).
%e A127652 a(5)=50 because the fifth integer whose unitary aliquot sequence is longer than its ordinary aliquot sequence is 50.
%t A127652 UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];s[n_]:=DivisorSigma[1,n]-n;h[n_] := If[n > 0, s[n], 0];OrdinaryTrajectory[n_] := Most[NestWhileList[h, n, UnsameQ, All]];Select[Range[275],Length[UnitaryTrajectory[ # ]]>Length[OrdinaryTrajectory[ # ]] &]
%Y A127652 Cf. A127161, A127162, A127163, A127164, A063769, A063990, A097032, A098007, A097010, A127653, A098185, A127654, A063991, A127655, A097037, A097036.
%K A127652 hard,nonn
%O A127652 1,1
%A A127652 _Ant King_, Jan 24 2007