This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127656 #18 Jun 04 2023 18:57:17 %S A127656 2,2,2,3,2,2,2,3,3,2,2,3,2,2,2,3,2,3,2,3,2,2,2,3,3,2,3,3,2,2,2,3,2,2, %T A127656 2,1,2,2,2,3,2,2,2,3,3,2,2,4,3,3,2,3,2,3,2,3,2,2,2,3,2,2,3,3,2,2,2,3, %U A127656 2,2,2,5,2,2,3,3,2,2,2,3,4,2,2,3,2,2,2,3,2,3,2,3,2,2,2,3,2,3,3,4 %N A127656 Lengths of the exponential aliquot sequences. %C A127656 The exponential aliquot sequence is defined by the map x -> A051377(x)-x starting at n. %C A127656 The length of an exponential aliquot sequence is defined according to the length of its transient part + the length of its terminal cycle. %H A127656 Hans Havermann, <a href="/A127656/b127656.txt">Table of n, a(n) for n = 1..10000</a> %H A127656 Hagis, Peter Jr., <a href="http://dx.doi.org/10.1155/S0161171288000407">Some Results Concerning Exponential Divisors</a>, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350. %H A127656 J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link] %H A127656 J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine] %H A127656 J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only] %e A127656 a(4)=3 because the exponential aliquot sequence generated by 4 is <4,2,0> and it has length 3. %e A127656 From _R. J. Mathar_, Oct 05 2017: (Start) %e A127656 The aliquot sequnence may enter a cycle (see A054979) %e A127656 36 -> 36 -> .. %e A127656 180 -> 180 -> .. %e A127656 252 -> 252 -> .. %e A127656 396 -> 396 -> .. %e A127656 468 -> 468 -> .. %e A127656 612 -> 612 -> .. %e A127656 684 -> 684 -> .. %e A127656 828 -> 828 -> .. %e A127656 900 -> 1260 -> 1260 -> .. %e A127656 1044 -> 1044 -> .. %e A127656 1116 -> 1116 -> .. %e A127656 1260 -> 1260 -> .. %e A127656 1332 -> 1332 -> .. %e A127656 1352 -> 468 -> 468 -> .. %e A127656 1476 -> 1476 -> .. %e A127656 1548 -> 1548 -> .. %e A127656 1692 -> 1692 -> .. %e A127656 1728 -> 612 -> 612 -> .. %e A127656 1800 -> 1800 -> .. %e A127656 1908 -> 1908 -> .. %e A127656 1980 -> 1980 -> .. %e A127656 2124 -> 2124 -> .. %e A127656 2196 -> 2196 -> .. %e A127656 2340 -> 2340 -> .. %e A127656 2412 -> 2412 -> .. %e A127656 2556 -> 2556 -> .. %e A127656 2628 -> 2628 -> .. %e A127656 2700 -> 2700 -> .. %e A127656 2772 -> 2772 -> .. %e A127656 2844 -> 2844 -> .. %e A127656 2880 -> 1800 -> 1800 -> .. %e A127656 (End) %p A127656 A127656 := proc(n) %p A127656 local trac,x; %p A127656 x := n ; %p A127656 trac := [x] ; %p A127656 while true do %p A127656 x := A051377(x)-trac[-1] ; %p A127656 if x = 0 then %p A127656 return 1+nops(trac) ; %p A127656 elif x in trac then %p A127656 return nops(trac) ; %p A127656 end if; %p A127656 trac := [op(trac),x] ; %p A127656 end do: %p A127656 end proc: # _R. J. Mathar_, Oct 05 2017 %t A127656 ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[eTrajectory[ # ]] &/@Range[100] %t A127656 (* Second program: *) %t A127656 f[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}]&) /@ FactorInteger[n]; %t A127656 a[n_] := Length[FixedPointList[f[#]-#&, n]]-1; %t A127656 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 04 2023 *) %Y A127656 Cf. A127657, A127658, A127659, A127660. %Y A127656 Cf. also A127661. %K A127656 nonn %O A127656 1,1 %A A127656 _Ant King_, Jan 25 2007