cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127660 Integers whose exponential aliquot sequences end in an exponential amicable pair.

This page as a plain text file.
%I A127660 #17 Feb 17 2024 23:43:46
%S A127660 90972,100548,454860,502740,937692,968436,1000692,1106028,1182636,
%T A127660 1307124,1383732,1536416,1546524,1709316,2092356,2312604,2502528,
%U A127660 2638188,2690100,2820132,2915892,3116988,3365964,3720276,3729852,3907008,3911796,4122468,4248552,4275684
%N A127660 Integers whose exponential aliquot sequences end in an exponential amicable pair.
%C A127660 Sometimes called the exponential 2-cycle attractor set. The first 10 terms of this sequence are the same as the first 10 terms of A127659.
%H A127660 Amiram Eldar, <a href="/A127660/b127660.txt">Table of n, a(n) for n = 1..10000</a>
%H A127660 Peter Hagis, Jr., <a href="https://doi.org/10.1155/S0161171288000407">Some results concerning exponential divisors</a>, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
%H A127660 J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a>. [Broken link]
%H A127660 J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a>. [Via Internet Archive Wayback-Machine]
%H A127660 J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a>. [Cached copy, pdf file only]
%e A127660 a(11) = 1383732 because the eleventh integer whose exponential aliquot sequence ends in an exponential amicable pair is 1383732.
%t A127660 ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];se[n_]:=Plus@@ExponentialDivisors[n]-n;g[n_] := If[n > 0, se[n], 0];eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];ExponentialAmicableNumberQ[k_]:=If[Nest[se,k,2]==k && !se[k]==k,True,False];Select[Range[5 10^6],ExponentialAmicableNumberQ[Last[eTrajectory[ # ]]] &]
%t A127660 f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-2]] != v[[-1]] > 0 && v[[-3]] == v[[-1]]]; Select[Range[10^6], q] (* _Amiram Eldar_, Mar 11 2023 *)
%Y A127660 Cf. A127656, A127657, A127658.
%Y A127660 Subsequences: A127659, A126165, A126166.
%K A127660 nonn
%O A127660 1,1
%A A127660 _Ant King_, Jan 25 2007