cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127662 Integers whose infinitary aliquot sequences end in an infinitary perfect number (A007357).

This page as a plain text file.
%I A127662 #18 Mar 11 2023 05:43:00
%S A127662 6,30,42,54,60,66,72,78,90,100,140,148,152,192,194,196,208,220,238,
%T A127662 244,252,268,274,292,296,298,300,336,348,350,360,364,372,374,380,382,
%U A127662 386,400,416,420,424,476,482,492,516,520,532,540,542,544,550,572,576,578,586
%N A127662 Integers whose infinitary aliquot sequences end in an infinitary perfect number (A007357).
%H A127662 Amiram Eldar, <a href="/A127662/b127662.txt">Table of n, a(n) for n = 1..75</a>
%H A127662 Graeme L. Cohen, <a href="http://dx.doi.org/10.1090/S0025-5718-1990-0993927-5">On an integer's infinitary divisors</a>, Math. Comp., 54 (1990), 395-411.
%H A127662 J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a>. [Broken link]
%H A127662 J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a>. [Via Internet Archive Wayback-Machine]
%H A127662 J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a>. [Cached copy, pdf file only]
%e A127662 a(5) = 60 because the fifth number whose infinitary aliquot sequence ends in an infinitary perfect number is 60.
%e A127662 6 -> 6 ...
%e A127662 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 60 -> 60 -> ..
%e A127662 66 -> 78 -> 90 -> 90 -> ..
%e A127662 72 -> 78 -> 90 -> 90 -> ..
%e A127662 78 -> 90 -> 90 -> ..
%e A127662 90 -> 90 -> ..
%e A127662 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 102 -> 114 -> 126 -> 114 -> ..  cycle but not in the sequence
%e A127662 114 -> 126 -> 114 -> .. cycle but not in the sequence
%e A127662 126 -> 114 -> 126 -> ..
%e A127662 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 152 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 192 -> 148 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 196 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 208 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 210 -> 366 -> 378 -> 582 -> 594 -> 846 -> 594 -> ..
%e A127662 220 -> 140 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 238 -> 194 -> 100 -> 30 -> 42 -> 54 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 244 -> 66 -> 78 -> 90 -> 90 -> ..
%e A127662 246 -> 258 -> 270 -> 450 -> 330 -> 534 -> 546 -> 798 -> 1122 -> 1470 -> 2130 -> 3054 -> 3066 -> 4038 -> 4050 -> 2346 -> 2838 -> 3498 -> 4278 -> 4938 -> 4950 -> 4410 -> 4590 -> 8370 -> 14670 -> 14850 -> 22590 -> 22770 -> 29070 -> 35730 -> 35910 -> 79290 -> 79470 -> 79650 -> 107550 -> 79650 -> ..
%p A127662 isA007357 := proc(n)
%p A127662     A049417(n) = 2*n ;
%p A127662     simplify(%) ;
%p A127662 end proc:
%p A127662 isA127662 := proc(n)
%p A127662     local trac,x;
%p A127662     x := n ;
%p A127662     trac := [x] ;
%p A127662     while true do
%p A127662         x := A049417(x)-trac[-1] ;
%p A127662         if x = 0 then
%p A127662             return false ;
%p A127662         elif x in trac then
%p A127662             return isA007357(x) ;
%p A127662         end if;
%p A127662         trac := [op(trac),x] ;
%p A127662     end do:
%p A127662 end proc:
%p A127662 for n from 1 do
%p A127662     if isA127662(n) then
%p A127662         printf("%d,\n",n) ;
%p A127662     end if;
%p A127662 end do: # _R. J. Mathar_, Oct 05 2017
%t A127662 ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],_?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[500],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] &]
%t A127662 s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] != n && v[[-2]] == v[[-1]] > 0]; Select[Range[3200], q] (* _Amiram Eldar_, Mar 11 2023 *)
%Y A127662 Cf. A007357, A126168, A127661 - A127667.
%K A127662 hard,nonn
%O A127662 1,1
%A A127662 _Ant King_, Jan 26 2007
%E A127662 More terms from _Amiram Eldar_, Mar 11 2023