cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127665 Numbers whose infinitary aliquot sequences end in an infinitary amicable pair.

This page as a plain text file.
%I A127665 #10 May 29 2017 15:28:06
%S A127665 102,114,126,210,246,258,270,318,330,342,354,366,378,388,390,408,426,
%T A127665 436,438,450,474,484,486,498,510,522,534,536,546,552,570,582,594,600,
%U A127665 606,618,630,642,648,654,666,672,702,726,738,750,760,762,774,786,798
%N A127665 Numbers whose infinitary aliquot sequences end in an infinitary amicable pair.
%C A127665 Sometimes called the infinitary 2-cycle attractor set.
%H A127665 Graeme L. Cohen, <a href="http://dx.doi.org/10.1090/S0025-5718-1990-0993927-5">On an integer's infinitary divisors</a>, Math. Comp., 54 (1990), 395-411.
%H A127665 J. O. M. Pedersen, <a href="http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Broken link]
%H A127665 J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a> [Via Internet Archive Wayback-Machine]
%H A127665 J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a> [Cached copy, pdf file only]
%e A127665 a(5)=246 because 246 is the fifth number whose infinitary aliquot sequence ends in an infinitary amicable pair.
%t A127665 ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],_?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum,k,2]==k && !properinfinitarydivisorsum[k]==k,True,False];Select[Range[820],InfinitaryAmicableNumberQ[Last[iTrajectory[ # ]]] &]
%Y A127665 Cf. A126168, A007357, A127661, A127662, A127663, A127664, A127666, A127667, A126169, A126170, A126171.
%K A127665 hard,nonn
%O A127665 1,1
%A A127665 _Ant King_, Jan 26 2007