A127669 Number of numbers mapped to A127668(n) with the map described there.
1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 3, 2, 7, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 3, 3, 11, 2, 3, 1, 3, 2, 3, 1, 7, 2, 2, 3, 3, 2, 3, 2, 7, 5, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 11, 1, 3, 3, 5
Offset: 2
Examples
a(4)=2 because two numbers are mapped to 11= A127668(4), namely n=p(1)*p(1)=4 and n=p(11)=31. p(n)=A000041(n) (partition numbers). a(24)=5 but A008481(24)=4. The five numbers mapped to A127668(24)= 2111 are: 18433, 2594, 2263, 292, 24.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
f:= proc(n) local S; nops(g(sprintf("%d",n))) end proc: g:= proc(s) option remember; local S,m,k1; if s[1] = "0" then return {} fi; S:= {[parse(s)]}; for m from 1 to length(s)-1 do k1:= parse(s[1..m]); S:= S union map(t -> [k1,op(t)], select(r -> r[1] <= k1, procname(s[m+1..-1]))); od; S; end proc: h:= proc(n) local F; F:= map(t -> numtheory:-pi(t[1])$t[2], sort(ifactors(n)[2],(a,b) -> a[1] > b[1])); parse(cat(op(F))) end proc: seq(f(h(i)),i=2..100); # Robert Israel, Dec 08 2024
Formula
a(n) <= pa(Length( A127668(n))), n>=2. Length gives the number of digits and pa(k):=A000041(k) (partition numbers). (It was originally claimed that this is equality, but that is not correct. - Franklin T. Adams-Watters, May 21 2014)
Extensions
Edited by Franklin T. Adams-Watters, May 21 2014
Corrected by Robert Israel, Dec 08 2024
Comments