This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127676 #18 Sep 08 2022 08:45:29 %S A127676 1,4,17,104,347,4132,50251,47248,848261,16882724,16189889,357817912, %T A127676 1856017421,5753962988,161845337077,4871637351712,5008383140437, %U A127676 5137314884092,185568039683479,181286844605704,7599727236867089 %N A127676 Numerators of partial sums of a series for Pi*sqrt(2)/4. %C A127676 Denominators coincide with A025547(n+1) for n=0..41, but then start to differ. See the W. Lang link. denominator(r(42))=7422822568422519986207785205976075 but the corresponding entry is A025547(43)=126187983663182839765532348501593275. %D A127676 E. Maor, Trigonometric Delights, Princeton University Press, 1998, p. 205. %H A127676 G. C. Greubel, <a href="/A127676/b127676.txt">Table of n, a(n) for n = 0..1000</a> %H A127676 R. Ayoub, <a href="http://www.jstor.org/stable/2319041">Euler and the Zeta Function</a>, Am. Math. Monthly 81 (1974) 1067-1086, p. 1070. %H A127676 W. Lang, <a href="/A127676/a127676.txt">Rationals and limit. </a> %F A127676 a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = Sum_{k=0..n} (-1)^floor(k/2)/(2*k+1). %e A127676 Rationals r(n): [1, 4/3, 17/15, 104/105, 347/315, 4132/3465, ...]. %t A127676 Numerator[Table[Sum[(-1)^Floor[k/2]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* _G. C. Greubel_, Aug 17 2018 *) %o A127676 (PARI) a(n) = numerator(sum(k=0, n, (-1)^(k\2)/(2*k+1))); \\ _Michel Marcus_, Oct 03 2017 %o A127676 (Magma) [Numerator((&+[(-1)^Floor(k/2)/(1+2*k): k in [0..n]])): n in [0..50]]; // _G. C. Greubel_, Aug 17 2018 %Y A127676 Cf. A025547 (denominators). %K A127676 nonn,easy,frac %O A127676 0,2 %A A127676 _Wolfdieter Lang_, Mar 07 2007