A127687 Number of unlabeled maximal independent sets in the n-cycle graph.
0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 6, 7, 7, 11, 11, 16, 19, 24, 28, 39, 46, 60, 75, 97, 120, 159, 197, 257, 327, 422, 539, 700, 892, 1157, 1488, 1928, 2479, 3219, 4148, 5383, 6961, 9029, 11687, 15184, 19673, 25564, 33174, 43125, 56010, 72868, 94719, 123283
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, arXiv:0701647 [math.CO] (2007) and JIS 11 (2008) 08.5.7.
- P. Flajolet and M. Soria, The Cycle Construction In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
Programs
-
Maple
with(numtheory): perrin:=proc(n) option remember: if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else perrin(n-2)+perrin(n-3) fi end: a:=proc(n) local d,N:d:=divisors(n);N:=nops(d): add(phi(n/d[k])*perrin(d[k]),k=1..N)/n end: seq(a(n),n=1..50); # Robert FERREOL, Apr 10 2024
-
Mathematica
(* p = A001608 *) p[n_] := p[n] = p[n - 2] + p[n - 3]; p[0] = 3; p[1] = 0; p[2] = 2; A113788[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; a[n_] := Sum[A113788[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from formula *)
-
PARI
N = 66; x = 'x + O('x^N); f(x) = x^2+x^3; gf = 'c0 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n))) ); v = Vec(gf); v[1]-='c0; v /* includes a(0)=0 */ /* Joerg Arndt, Jan 21 2013 */
Comments