cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127687 Number of unlabeled maximal independent sets in the n-cycle graph.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 6, 7, 7, 11, 11, 16, 19, 24, 28, 39, 46, 60, 75, 97, 120, 159, 197, 257, 327, 422, 539, 700, 892, 1157, 1488, 1928, 2479, 3219, 4148, 5383, 6961, 9029, 11687, 15184, 19673, 25564, 33174, 43125, 56010, 72868, 94719, 123283
Offset: 1

Views

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Comments

Number of unlabeled (i.e., defined up to a rotation) maximal independent sets in the n-cycle graph. Also: Number of cyclic compositions of n in which each term is either 2 or 3.
(a(n)*n - A001608(n)) mod 2 is a binary sequence of period 14: [0,0,0,0,0,1,0,0,0,1,0,1,0,1]. - Richard Turk, Aug 25 2017

Crossrefs

Programs

  • Maple
    with(numtheory):
    perrin:=proc(n) option remember: if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else perrin(n-2)+perrin(n-3) fi end:
    a:=proc(n) local d,N:d:=divisors(n);N:=nops(d):
    add(phi(n/d[k])*perrin(d[k]),k=1..N)/n end:
    seq(a(n),n=1..50);
    # Robert FERREOL, Apr 10 2024
  • Mathematica
    (* p = A001608 *) p[n_] := p[n] = p[n - 2] + p[n - 3]; p[0] = 3; p[1] = 0; p[2] = 2; A113788[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; a[n_] := Sum[A113788[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from formula *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    f(x) = x^2+x^3;
    gf = 'c0 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n)))  );
    v = Vec(gf); v[1]-='c0; v  /* includes a(0)=0 */
    /* Joerg Arndt, Jan 21 2013 */

Formula

a(n) = Sum_{d|n} A113788(d) = 2 * A127685(n) - A127682(n) = (1/n)*(Sum_{d|n} A000010(n/d) * A001608(d)).
G.f.: Sum_{k>=1} (phi(k)/k) * log( 1/(1-B(x^k)) ) where B(x) = x^2 + x^3. - Joerg Arndt, Jan 21 2013