cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276999 Triangle read by rows, T(n,k) = n^k - 2^(k/2)*KummerU(-k/2,1/2,n^2/2) for 0<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 9, 0, 0, 1, 12, 93, 0, 0, 1, 15, 147, 1175, 0, 0, 1, 18, 213, 2070, 17835, 0, 0, 1, 21, 291, 3325, 33825, 317667, 0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647, 0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397
Offset: 0

Views

Author

Peter Luschny, Oct 06 2016

Keywords

Comments

East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f: [k] -> [n]: f has 2-cycles}).

Examples

			Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1,  9;
0, 0, 1, 12,  93;
0, 0, 1, 15, 147, 1175;
0, 0, 1, 18, 213, 2070, 17835;
0, 0, 1, 21, 291, 3325, 33825,  317667;
0, 0, 1, 24, 381, 5000, 58575,  635208,  6506647;
0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397;
.
For instance T(3,3) = 9 because there are 27 functions [3]->[3], 18 of which have
no 2-cycles. The 9 functions which have 2-cycles are (represented as [f(1), f(2),
f(3)]): [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 3, 2], [3, 1, 1],
[3, 2, 1], [3, 3, 1], [3, 3, 2].
		

Crossrefs

T(n,k) = n^k - A244490(n,k), T(n,3) = A008585(n) for n>=3, T(n,4) = A224334(n-1) for n>=4, T(n,5) = A127694(n-3) for n>=5.

Programs

  • Maple
    T := (n,k) -> n^k - 2^(k/2)*KummerU(-k/2, 1/2, n^2/2):
    seq(seq(simplify(T(n,k)), k=0..n), n=0..9);
  • Mathematica
    Table[Simplify[n^k - 2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten
  • Sage
    def T(n, k):
        @cached_function
        def h(n, x):
            if n == 0: return 1
            if n == 1: return 2*x
            return 2*(x*h(n-1,x)-(n-1)*h(n-2,x))
        return n^k - h(k, n/sqrt(2))/2^(k/2)
    for n in range(10):
        print([T(n,k) for k in (0..n)])

Formula

T(n,k) = n^k - 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = n^k - Sum_{i=0..k/2} k!/((-2)^i*i!*(k-2*i)!)*n^(k-2*i).
T(n,k) = n^k*(1-hypergeom([-k/2, (1-k)/2], [], -2/n^2)) for n>=1.
T(n,k) ~ n^k*(((k-1)*k)/(2*n^2)-(k*(k^3-6*k^2+11*k-6))/(8*n^4)+(k*(k^5-15*k^4 +85*k^3-225*k^2+274*k-120))/(48*n^6)+O((1/n)^7)).
Showing 1-1 of 1 results.