This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127709 #26 Sep 22 2021 07:43:26 %S A127709 1,0,1,0,2,1,0,1,4,1,0,1,7,9,1,0,0,4,28,15,1,0,0,2,47,91,26,1,0,0,0, %T A127709 27,268,257,40,1,0,0,0,10,312,1318,643,62,1,0,0,0,1,137,2807,5347, %U A127709 1511,91,1,0,0,0,1,35,2204,19516,19453,3331 %N A127709 Triangle T(n, d) = the number of isomorphism classes of smooth Fano d-polytopes with n vertices, read by rows (n >= 2, 1 <= d < n). %H A127709 Mikkel Obro, <a href="https://arXiv.org/abs/0704.0049">An algorithm for the classification of smooth Fano polytopes</a>, arXiv:0704.0049 [math.CO], Apr 02 2007, p. 15. %H A127709 Mikkel Ă˜bro, <a href="https://pure.au.dk/ws/files/41742384/imf_phd_2008_moe.pdf">Classification of smooth Fano polytopes</a>, PhD thesis, 2007. See Appendix A. %H A127709 Andreas Paffenholz, <a href="https://polymake.org/polytopes/paffenholz/www/fano.html">Smooth Reflexive Lattice Polytopes</a> %e A127709 Table begins: %e A127709 n |d=1|d=2|d=3|d=4|d=5|d=6|d=7 %e A127709 1 | %e A127709 2 | 1 | %e A127709 3 | | 1 | %e A127709 4 | | 2 | 1 | %e A127709 5 | | 1 | 4 | 1 | %e A127709 6 | | 1 | 7 | 9 | 1 | %e A127709 7 | | | 4 | 28| 15| 1 | %e A127709 8 | | | 2 | 47| 91| 26| 1 %e A127709 9 | | | | 27|268|257| 40 %Y A127709 Column sums are A140296. %K A127709 nonn,tabl %O A127709 2,5 %A A127709 _Jonathan Vos Post_, Apr 03 2007 %E A127709 Edited and leading zeroes in rows and few more values added by _Andrey Zabolotskiy_, Sep 19 2018