cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127720 Floor of square root of sum of squares of n odd consecutive primes.

This page as a plain text file.
%I A127720 #8 Jul 27 2017 13:20:00
%S A127720 3,5,9,14,19,25,31,39,48,57,68,80,90,102,115,129,143,157,173,187,203,
%T A127720 220,237,256,275,294,313,331,350,372,394,418,440,465,488,513,538,564,
%U A127720 590,616,642,670,697,724,751,780,811,843,873
%N A127720 Floor of square root of sum of squares of n odd consecutive primes.
%F A127720 a(n) = A000196(A024450(n+1) - 4). - _R. J. Mathar_, Jan 28 2007
%p A127720 A024450 := proc(n) local i ; add((ithprime(i))^2,i=1..n) ; end: Ax := proc(n) A024450(n+1)-4 ; end: A000196 := proc(n) floor(sqrt(n)) ; end: A127720 := proc(n) A000196(Ax(n)) ; end: for n from 1 to 30 do printf("%d, ",A127720(n)) ; od ; # _R. J. Mathar_, Jan 28 2007
%t A127720 a = {}; k = 0; Do[k = k + (Prime[x])^2; AppendTo[a, Floor[Sqrt[k]]], {x, 2, 50}]; a
%t A127720 Module[{nn=50},Floor[Sqrt[#]]&/@Accumulate[Prime[Range[2,nn+1]]^2]] (* _Harvey P. Dale_, Jul 27 2017 *)
%Y A127720 Cf. A127719, A127721.
%K A127720 nonn
%O A127720 1,1
%A A127720 _Artur Jasinski_, Jan 25 2007