This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127749 #13 Apr 21 2021 11:33:18 %S A127749 1,0,3,0,-3,5,0,3,-5,7,0,0,0,-7,9,0,-3,5,0,-9,11,0,0,0,0,0,-11,13,0,3, %T A127749 -5,7,0,0,-13,15,0,0,0,0,0,0,0,-15,17,0,0,0,-7,9,0,0,0,-17,19,0,0,0,0, %U A127749 0,0,0,0,0,-19,21,0,-3,5 %N A127749 Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise. %C A127749 Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750. %C A127749 The first conjecture is equivalent to the row sums conjecture in A111967. - _R. J. Mathar_, Apr 21 2021 %F A127749 T(n,k) = (2*k+1)*A111967(n,k). - _R. J. Mathar_, Apr 21 2021 %e A127749 Triangle begins %e A127749 1; %e A127749 0, 3; %e A127749 0, -3, 5; %e A127749 0, 3, -5, 7; %e A127749 0, 0, 0, -7, 9; %e A127749 0, -3, 5, 0, -9, 11; %e A127749 0, 0, 0, 0, 0, -11, 13; %e A127749 0, 3, -5, 7, 0, 0, -13, 15; %e A127749 0, 0, 0, 0, 0, 0, 0, -15, 17; %e A127749 0, 0, 0, -7, 9, 0, 0, 0, -17, 19; %e A127749 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21; %e A127749 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, -21, 23; %e A127749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 25; %e A127749 Inverse of triangle %e A127749 1; %e A127749 0, 1/3; %e A127749 0, 1/5, 1/5; %e A127749 0, 0, 1/7, 1/7; %e A127749 0, 0, 1/9, 1/9, 1/9; %e A127749 0, 0, 0, 1/11, 1/11, 1/11; %e A127749 0, 0, 0, 1/13, 1/13, 1/13, 1/13; %e A127749 0, 0, 0, 0, 1/15, 1/15, 1/15, 1/15; %e A127749 0, 0, 0, 0, 1/17, 1/17, 1/17, 1/17, 1/17; %e A127749 0, 0, 0, 0, 0, 1/19, 1/19, 1/19, 1/19, 1/19; %e A127749 0, 0, 0, 0, 0, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21; %p A127749 A127749 := proc(n,k) %p A127749 option remember ; %p A127749 if k > n then %p A127749 0 ; %p A127749 elif k = n then %p A127749 2*n+1 ; %p A127749 else %p A127749 -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ; %p A127749 end if; %p A127749 end proc: %p A127749 seq(seq( A127749(n,k),k=0..n),n=0..20) ; # _R. J. Mathar_, Feb 09 2021 %t A127749 nmax = 10; %t A127749 A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0]; %t A127749 invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]]; %t A127749 T[n_, k_] := invA[[n+1, k+1]]; %t A127749 Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 05 2020 *) %Y A127749 Cf. A111967. %K A127749 sign,tabl %O A127749 0,3 %A A127749 _Paul Barry_, Jan 28 2007