cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127800 Inverse of number triangle A(n,k) = 1/(2 - 0^n), if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 0, 2, 0, -2, 2, 0, 2, -2, 2, 0, 0, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, 0, 0, 0, 0, -2, 2, 0, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, -2, 2, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, -2, 2, 0, -2, 2, 0, 0, 0, 0, -2, 2
Offset: 0

Views

Author

Paul Barry, Jan 29 2007

Keywords

Comments

Row sums are A069517 (conjecture).

Examples

			Triangle begins
  1;
  0,  2;
  0, -2,  2;
  0,  2, -2,  2;
  0,  0,  0, -2,  2;
  0, -2,  2,  0, -2,  2;
  0,  0,  0,  0,  0, -2,  2;
  0,  2, -2,  2,  0,  0, -2,  2;
  0,  0,  0,  0,  0,  0,  0, -2,  2;
  0,  0,  0, -2,  2,  0,  0,  0, -2,  2;
  0,  0,  0,  0,  0,  0,  0,  0,  0, -2,  2;
  0, -2,  2,  0, -2,  2,  0,  0,  0,  0, -2,  2;
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -2,  2;
Inverse of triangle begins
  1;
  0, 1/2;
  0, 1/2, 1/2;
  0,  0,  1/2, 1/2;
  0,  0,  1/2, 1/2, 1/2;
  0,  0,   0,  1/2, 1/2, 1/2;
  0,  0,   0,  1/2, 1/2, 1/2, 1/2;
  0,  0,   0,   0,  1/2, 1/2, 1/2, 1/2;
  0,  0,   0,   0,  1/2, 1/2, 1/2, 1/2, 1/2;
  0,  0,   0,   0,   0,  1/2, 1/2, 1/2, 1/2, 1/2;
  0,  0,   0,   0,   0,  1/2, 1/2, 1/2, 1/2, 1/2, 1/2;