cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127801 Inverse of number triangle A(n,k) = 1/(3 - 2*0^n) if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 0, 3, 0, -3, 3, 0, 3, -3, 3, 0, 0, 0, -3, 3, 0, -3, 3, 0, -3, 3, 0, 0, 0, 0, 0, -3, 3, 0, 3, -3, 3, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, 0, 0, -3, 3, 0, 0, 0, -3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 3, 0, -3, 3, 0, -3, 3
Offset: 0

Views

Author

Paul Barry, Jan 29 2007

Keywords

Examples

			Triangle begins
  1;
  0,  3;
  0, -3,  3;
  0,  3, -3,  3;
  0,  0,  0, -3,  3;
  0, -3,  3,  0, -3,  3;
  0,  0,  0,  0,  0, -3,  3;
  0,  3, -3,  3,  0,  0, -3,  3;
  0,  0,  0,  0,  0,  0,  0, -3,  3;
  0,  0,  0, -3,  3,  0,  0,  0, -3,  3;
  0,  0,  0,  0,  0,  0,  0,  0,  0, -3,  3;
  0, -3,  3,  0, -3,  3,  0,  0,  0,  0, -3,  3;
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -3,  3;
Inverse of triangle
  1;
  0, 1/3;
  0, 1/3, 1/3;
  0,  0,  1/3, 1/3;
  0,  0,  1/3, 1/3, 1/3;
  0,  0,   0,  1/3, 1/3, 1/3;
  0,  0,   0,  1/3, 1/3, 1/3, 1/3;
  0,  0,   0,   0,  1/3, 1/3, 1/3, 1/3;
  0,  0,   0,   0,  1/3, 1/3, 1/3, 1/3, 1/3;
  0,  0,   0,   0,   0,  1/3, 1/3, 1/3, 1/3, 1/3;
  0,  0,   0,   0,   0,  1/3, 1/3, 1/3, 1/3, 1/3, 1/3;
		

Crossrefs

Row sums are A127802.