This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127803 #22 Jun 11 2025 01:02:45 %S A127803 1,0,3,0,-3,7,0,3,-7,15,0,0,0,-15,31,0,-3,7,0,-31,63,0,0,0,0,0,-63, %T A127803 127,0,3,-7,15,0,0,-127,255,0,0,0,0,0,0,0,-255,511,0,0,0,-15,31,0,0,0, %U A127803 -511,1023,0,0,0,0,0,0,0,0,0,-1023,2047 %N A127803 Inverse of number triangle A(n,k) = 1/(2*2^n-1) if k <= n <= 2k, 0 otherwise. %C A127803 Row sums are A127804. %H A127803 Tilman Piesk, <a href="https://commons.wikimedia.org/wiki/File:Sequence_A127804_from_signed_triangle.svg">Illustration of first 32 rows</a> %e A127803 Triangle begins %e A127803 1; %e A127803 0, 3; %e A127803 0, -3, 7; %e A127803 0, 3, -7, 15; %e A127803 0, 0, 0, -15, 31; %e A127803 0, -3, 7, 0, -31, 63; %e A127803 0, 0, 0, 0, 0, -63, 127; %e A127803 0, 3, -7, 15, 0, 0, -127, 255; %e A127803 0, 0, 0, 0, 0, 0, 0, -255, 511; %e A127803 0, 0, 0, -15, 31, 0, 0, 0, -511, 1023; %e A127803 0, 0, 0, 0, 0, 0, 0, 0, 0, -1023, 2047; %e A127803 ... %e A127803 Inverse of %e A127803 1; %e A127803 0, 1/3; %e A127803 0, 1/7, 1/7; %e A127803 0, 0, 1/15, 1/15; %e A127803 0, 0, 1/31, 1/31, 1/31; %e A127803 0, 0, 0, 1/63, 1/63, 1/63; %e A127803 0, 0, 0, 1/127, 1/127, 1/127, 1/127; %e A127803 0, 0, 0, 0, 1/255, 1/255, 1/255, 1/255; %e A127803 0, 0, 0, 0, 1/511, 1/511, 1/511, 1/511, 1/511; %e A127803 0, 0, 0, 0, 0, 1/1023, 1/1023, 1/1023, 1/1023, 1/1023; %e A127803 0, 0, 0, 0, 0, 1/2047, 1/2047, 1/2047, 1/2047, 1/2047, 1/2047; %e A127803 ... %p A127803 A127803 := proc(n,k) %p A127803 A := Matrix(n+1,n+1) ; %p A127803 for r from 0 to n do %p A127803 for c from 0 to n do %p A127803 if c <= r and r <= 2*c then %p A127803 A[r+1,c+1] := 1/(2*2^r-1) ; %p A127803 else %p A127803 A[r+1,c+1] := 0 ; %p A127803 end if; %p A127803 end do: %p A127803 end do: %p A127803 Ainv := LinearAlgebra[MatrixInverse](A) ; %p A127803 Ainv[n+1,k+1] ; %p A127803 end proc: %p A127803 seq(seq( A127803(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Feb 12 2024 %t A127803 rows = 11; %t A127803 A[n_, k_] := If[k <= n, If[n <= 2 k, 1/(2*2^n - 1), 0], 0]; %t A127803 T = Table[A[n, k], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse; %t A127803 Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 03 2018 *) %o A127803 (PARI) B(n,k) = if(k<=n,if(n<=2*k,1/(2*2^n-1),0),0); %o A127803 lista(nn) = {my(m = matrix(nn, nn, n, k, B(n-1,k-1))^(-1)); for (n=1, nn, for (k=1, n, print1(m[n,k], ", ");); print(););} \\ _Michel Marcus_, Jul 03 2018 %Y A127803 Cf. A127804. %K A127803 sign,tabl %O A127803 0,3 %A A127803 _Paul Barry_, Jan 29 2007