cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127807 Least positive primitive root of (n-th prime)^2.

This page as a plain text file.
%I A127807 #8 Apr 28 2020 22:22:19
%S A127807 3,2,2,3,2,2,3,2,5,2,3,2,6,3,5,2,2,2,2,7,5,3,2,3,5,2,5,2,6,3,3,2,3,2,
%T A127807 2,6,5,2,5,2,2,2,19,5,2,3,2,3,2,6,3,7,7,6,3,5,2,6,5,3,3,2,5,17,10,2,3,
%U A127807 10,2,2,3,7,6,2,2,5,2,5,3,21,2,2,7,5,15,2,3,13,2,3,2,13,3,2,7,5,2,3,2,2
%N A127807 Least positive primitive root of (n-th prime)^2.
%C A127807 A055578 lists the indices n such that a(n) differs from A001918(n).
%D A127807 D. Cohen, R. W. K. Odoni, and W. W. Stothers, On the Least Primitive Root Modulo p^2, Bulletin of the London Mathematical Society 6:1 (March 1974), pp. 42-46.
%H A127807 Bryce Kerr, Kevin McGown, and Tim Trudgian, <a href="https://arxiv.org/abs/1908.11497">The least primitive root modulo p^2</a>. arXiv:1908.11497 [math.NT]
%F A127807 Cohen, Odoni, & Stothers prove that a(n) < prime(n)^(1/4 + e) for any e > 0 and all large enough n. Kerr, McGown, & Trudgian give an effective version: a(n) < prime(n)^0.99 for all n. - _Charles R Greathouse IV_, Apr 28 2020
%t A127807 << NumberTheory`NumberTheoryFunctions` Table[PrimitiveRoot[(Prime[n])^2], {n, 1, 100}]
%t A127807 PrimitiveRoot[Prime[Range[100]]^2] (* _Harvey P. Dale_, Aug 19 2017 *)
%Y A127807 Cf. A001918, A127808, A127809, A127810.
%K A127807 nonn,easy
%O A127807 1,1
%A A127807 _Artur Jasinski_, Jan 29 2007