This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127867 #16 Aug 19 2024 08:36:51 %S A127867 1,1,11,39,195,849,3895,17511,79339,358397,1620843,7326991,33127155, %T A127867 149766353,677103839,3061202815,13839823275,62570318397,282882722979, %U A127867 1278922980071,5782057329219,26140890761969,118183916056327,534313772133687,2415651952691819 %N A127867 Number of tilings of a 3 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares). %H A127867 Alois P. Heinz, <a href="/A127867/b127867.txt">Table of n, a(n) for n = 0..500</a> %H A127867 P. Chinn, R. Grimaldi and S. Heubach, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Heubach/heubach40.html">Tiling with L's and Squares</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8 %H A127867 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3, 7, -1, 2). %F A127867 G.f.: (1-x)^2/(1-3x-7x^2+x^3-2x^4). %e A127867 a(2) = 11 because the 3 X 2 board can be tiled in one way with only square tiles, in 8 ways using one L-tile and 3 square tiles and in 2 ways with 2 L-tiles. %t A127867 Table[Coefficient[Normal[Series[(1 - x)^2/(1 - 3x - 7x^2 + x^3 - 2x^4), {x, 0, 30}]], x, n], {n, 0, 30}] %Y A127867 Cf. A127864, A127865, A127866, A127868, A127869, A127870. %Y A127867 Column k=3 of A220054. - _Alois P. Heinz_, Dec 03 2012 %K A127867 nonn %O A127867 0,3 %A A127867 Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007