This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127898 #25 Feb 14 2023 10:53:49 %S A127898 1,3,1,12,6,1,55,33,9,1,273,182,63,12,1,1428,1020,408,102,15,1,7752, %T A127898 5814,2565,760,150,18,1,43263,33649,15939,5313,1265,207,21,1,246675, %U A127898 197340,98670,35880,9750,1950,273,24,1 %N A127898 Inverse of Riordan array (1/(1+x)^3, x/(1+x)^3). %C A127898 The convolution triangle of A001764 (number of ternary trees). - _Peter Luschny_, Oct 09 2022 %H A127898 G. C. Greubel, <a href="/A127898/b127898.txt">Rows n=0..100 of triangle, flattened</a> %H A127898 Paul Drube, <a href="https://arxiv.org/abs/2007.01892">Generalized Path Pairs and Fuss-Catalan Triangles</a>, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8. %F A127898 T(n,k) = (k+1)/(n+1)*binomial(3*n+3,n-k). - _Vladimir Kruchinin_, Jan 17 2013 %F A127898 G.f.: 1/(-y + 1/(-1 + (2*sin(1/3 *arcsin((3*sqrt(3*x))/2)))/( %F A127898 sqrt(3*x))))/x. - _Vladimir Kruchinin_, Feb 14 2023 %e A127898 Triangle begins: %e A127898 1, %e A127898 3, 1, %e A127898 12, 6, 1, %e A127898 55, 33, 9, 1, %e A127898 273, 182, 63, 12, 1, %e A127898 1428, 1020, 408, 102, 15, 1, %e A127898 7752, 5814, 2565, 760, 150, 18, 1, %e A127898 43263, 33649, 15939, 5313, 1265, 207, 21, 1, %e A127898 246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1, %e A127898 1430715, 1170585, 610740, 237510, 71253, 16443, 2842, 348, 27, 1, %e A127898 8414640, 7012200, 3786588, 1553472, 503440, 129456, 26040, 3968, 432, 30, 1 %p A127898 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. %p A127898 PMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # _Peter Luschny_, Oct 09 2022 %t A127898 Table[If[k == 0, Binomial[3*n, n-k]/(2*n+1), ((k+1)/n)*Binomial[3*n, n-k -1]], {n,1,10}, {k,0,n-1}]//Flatten (* _G. C. Greubel_, Apr 29 2018 *) %o A127898 (Magma) /* As triangle: */ [[(k+1)/(n+1)*Binomial(3*n+3,n-k): k in [0..n]]: n in [0..8]]; // _Bruno Berselli_, Jan 17 2013 %o A127898 (PARI) for(n=1,10, for(k=0,n-1, print1(if(k==0, binomial(3*n, n-k)/( 2*n +1), ((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ _G. C. Greubel_, Apr 29 2018 %o A127898 (GAP) Flat(List([0..10],n->List([0..n],k->(k+1)/(n+1)*Binomial(3*n+3,n-k)))); # _Muniru A Asiru_, Apr 30 2018 %Y A127898 First column is A001764(n+1). %Y A127898 Row sums are A047099. %Y A127898 Inverse of A127895. %K A127898 nonn,tabl %O A127898 0,2 %A A127898 _Paul Barry_, Feb 04 2007