This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127921 #20 Sep 08 2022 08:45:29 %S A127921 2,10,28,110,182,408,570,1012,2030,2480,4218,5740,6622,8648,12402, %T A127921 17110,18910,25058,29820,32412,41080,47642,58740,76048,85850,91052, %U A127921 102078,107910,120232,170688,187330,214268,223790,275650,286900,322478,360882,388108,431462 %N A127921 1/12 of product of three numbers: n-th prime, previous and following number. %C A127921 Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - _César Aguilera_, Feb 20 2018 %H A127921 G. C. Greubel, <a href="/A127921/b127921.txt">Table of n, a(n) for n = 2..10000</a> %F A127921 a(n) ~ (n log n)^3/12. - _Charles R Greathouse IV_, Feb 28 2018 %p A127921 a:= n-> (p->p*(p^2-1)/12)(ithprime(n)): %p A127921 seq(a(n), n=2..40); # _Alois P. Heinz_, Mar 08 2022 %t A127921 Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}] %t A127921 ((#-1)#(#+1))/12&/@Prime[Range[2,40]] (* _Harvey P. Dale_, Mar 08 2022 *) %o A127921 (PARI) a(n,p=prime(n))=binomial(p+1,3)/2 \\ _Charles R Greathouse IV_, Feb 28 2018 %o A127921 (Magma) [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // _G. C. Greubel_, Apr 30 2018 %Y A127921 Cf. A000040, A036689, A034953, A127917, A127918, A127919, A127920. %K A127921 nonn,easy %O A127921 2,1 %A A127921 _Artur Jasinski_, Feb 06 2007