This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128014 #43 Apr 24 2023 13:39:04 %S A128014 1,1,2,2,6,6,20,20,70,70,252,252,924,924,3432,3432,12870,12870,48620, %T A128014 48620,184756,184756,705432,705432,2704156,2704156,10400600,10400600, %U A128014 40116600,40116600,155117520,155117520,601080390,601080390 %N A128014 Central binomial coefficients C(2n,n) repeated. %C A128014 Binomial transform is A097893. Hankel transform is A128017. %C A128014 Hankel transform of a(n+1) is A128018. - _Paul Barry_, Nov 23 2009 %C A128014 Number of 2n-bead balanced binary necklaces that are equivalent to their reverse. - _Andrew Howroyd_, Sep 29 2017 %C A128014 Number of ballot sequences of length n in which the vote is tied or decided by 1 vote. - _Nachum Dershowitz_, Aug 12 2020 %C A128014 Number of binary strings of length n that are abelian squares. - _Michael S. Branicky_, Dec 21 2020 %F A128014 G.f.: (1+x)/sqrt(1-4*x^2). %F A128014 a(n) = C(n,n/2)*(1+(-1)^n)/2 + C(n-1,(n-1)/2)*(1-(-1)^n)/2. %F A128014 a(n) = (1/Pi)*Integral_{x=-2..2} x^n*(1+x)/(x*sqrt(4-x^2)), as moment sequence. %F A128014 E.g.f. of a(n+1): Bessel_I(0,2*x)+2*Bessel_I(1,2*x). - _Paul Barry_, Mar 26 2010 %F A128014 n*a(n) +(n-2)*a(n-1) +4*(-n+1)*a(n-2) +4*(-n+3)*a(n-3) = 0. - _R. J. Mathar_, Nov 26 2012 %F A128014 a(n) = 2^n*Product_{k=0..n-1} ((k/n+1/n)/2)^((-1)^k). - _Peter Luschny_, Dec 03 2013 %F A128014 From _Reinhard Zumkeller_, Nov 14 2014: (Start) %F A128014 a(n) = A000984(floor(n/2)). %F A128014 a(n) = A249095(n,n) = A249308(n) / 2^n. (End) %t A128014 (1+x)/Sqrt[1-4x^2] + O[x]^34 // CoefficientList[#, x]& (* _Jean-François Alcover_, Oct 07 2017 *) %t A128014 With[{cb=Table[Binomial[2n,n],{n,0,20}]},Riffle[cb,cb]] (* _Harvey P. Dale_, Feb 17 2020 *) %o A128014 (Haskell) %o A128014 a128014 = a000984 . flip div 2 %o A128014 -- _Reinhard Zumkeller_, Nov 14 2014 %Y A128014 Cf. A097893, A128017, A128018. %Y A128014 Cf. A000984, A249095, A249308. %K A128014 easy,nonn %O A128014 0,3 %A A128014 _Paul Barry_, Feb 11 2007