cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128024 Numbers k such that (7^k - 3^k)/4 is prime.

This page as a plain text file.
%I A128024 #29 Jul 30 2023 03:42:28
%S A128024 3,7,19,109,131,607,863,2917,5923,12421,187507,353501,817519
%N A128024 Numbers k such that (7^k - 3^k)/4 is prime.
%C A128024 All terms are primes. No other terms < 1000000.
%H A128024 Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.
%t A128024 k=4; Select[ Prime[ Range[1,200] ], PrimeQ[ ((k+3)^# - 3^#)/k ]& ]
%o A128024 (PARI) forprime(p=3,1e5,if(ispseudoprime((7^p-3^p)/4),print1(p", "))) \\ _Charles R Greathouse IV_, Jun 01 2011
%o A128024 (Python)
%o A128024 from sympy import isprime
%o A128024 def aupto(lim): return [k for k in range(lim+1) if isprime((7**k-3**k)//4)]
%o A128024 print(aupto(900)) # _Michael S. Branicky_, Mar 07 2021
%Y A128024 Cf. A028491, A057468, A059801, A121877.
%Y A128024 Cf. A128025, A128026, A128027, A128028, A128029, A128030, A128031, A128032.
%K A128024 hard,more,nonn
%O A128024 1,1
%A A128024 _Alexander Adamchuk_, Feb 11 2007
%E A128024 a(8)-a(9) from _Farideh Firoozbakht_, Apr 08 2007
%E A128024 a(10) from _Robert Price_, Jun 01 2011
%E A128024 a(11)-a(13) from _Jon Grantham_, Jul 29 2023