This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128064 #32 Oct 11 2021 18:43:27 %S A128064 1,-1,2,0,-2,3,0,0,-3,4,0,0,0,-4,5,0,0,0,0,-5,6,0,0,0,0,0,-6,7,0,0,0, %T A128064 0,0,0,-7,8,0,0,0,0,0,0,0,-8,9,0,0,0,0,0,0,0,0,-9,10,0,0,0,0,0,0,0,0, %U A128064 0,-10,11,0,0,0,0,0,0,0,0,0,0,-11,12 %N A128064 Triangle T with T(n,n)=n, T(n,n-1)=-(n-1) and otherwise T(n,k)=0; 0<k<=n. %C A128064 The matrix inverse = (1/1; 1/2, 1/2; 1/3, 1/3, 1/3;...). Binomial transform of A128064 = A128065. A128064 * A007318 = A103406. %C A128064 The positive version with row sums 2n+1 is given by T(n,k)=sum{j=k..n, C(n,j)*C(j,k)*(-1)^(n-j)*(j+1)}. - _Paul Barry_, May 26 2007 %C A128064 Binomial transform of unsigned sequence is A003506. - _Gary W. Adamson_, Aug 29 2007 %C A128064 Table T(n,k) read by antidiagonals. T(n,1) = n (for n>1), T(n,2) = -n, T(n,k) = 0, k > 2. - _Boris Putievskiy_, Feb 07 2013 %H A128064 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %F A128064 Number triangle T(n,k)=sum{j=k..n, C(n,j)*C(j,k)*(-1)^(j-k)*(j+1)}. - _Paul Barry_, May 26 2007 %F A128064 a(n) = A002260(n)*A167374(n); a(n) = i*floor((i+2)/(t+2))*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Feb 07 2013 %F A128064 G.f.: (-1)^k*[x^k*exp(k*x)]'/exp(k*x)=sum(n>=k, (-1)^n*T(n,k)*x^n). - _Vladimir Kruchinin_, Oct 18 2013 %e A128064 First few rows of the triangle are: %e A128064 1; %e A128064 -1,2; %e A128064 0,-2,3; %e A128064 0,0,-3,4; %e A128064 0,0,0,-4,5; %e A128064 0,0,0,0,-5,6; %e A128064 0,0,0,0,0,-6,7; %e A128064 ... %e A128064 From _Boris Putievskiy_, Feb 07 2013: (Start) %e A128064 The start of the sequence as table: %e A128064 1..-1..0..0..0..0..0... %e A128064 2..-2..0..0..0..0..0... %e A128064 3..-3..0..0..0..0..0... %e A128064 4..-4..0..0..0..0..0... %e A128064 5..-5..0..0..0..0..0... %e A128064 6..-6..0..0..0..0..0... %e A128064 7..-7..0..0..0..0..0... %e A128064 . . . %e A128064 (End) %t A128064 row[1] = {1}; row[2] = {-1, 2}; row[n_] := Join[Array[0&, n-2], {-n+1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Jan 12 2015 *) %Y A128064 Cf. A128065, A103406, A003506, A002260, A167374. %K A128064 tabl,sign,easy %O A128064 1,3 %A A128064 _Gary W. Adamson_, Feb 14 2007