This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128076 #30 Jan 08 2022 23:51:30 %S A128076 1,3,2,5,4,3,7,6,5,4,9,8,7,6,5,11,10,9,8,7,6,13,12,11,10,9,8,7,15,14, %T A128076 13,12,11,10,9,8,17,16,15,14,13,12,11,10,9,19,18,17,16,15,14,13,12,11, %U A128076 10,21,20,19,18,17,16,15,14,13,12,11 %N A128076 Triangle T(n,k) = 2*n-k, read by rows. %C A128076 From _Boris Putievskiy_, Jan 24 2013: (Start) %C A128076 Table T(n,k) = n+2*k-2 n, k > 0, read by antidiagonals. %C A128076 General case A209304. Let m be natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. Every next column is formed from previous shifted by m elements. %C A128076 For m=0 the result is A002260, %C A128076 for m=1 the result is A002024, %C A128076 for m=2 the result is A128076, %C A128076 for m=3 the result is A131914, %C A128076 for m=4 the result is A209304. (End) %H A128076 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv preprint arXiv:1212.2732 [math.CO], 2012. %F A128076 Matrix product A128064 * A004736 as infinite lower triangular matrices. %F A128076 From _Boris Putievskiy_, Jan 24 2013: (Start) %F A128076 For the general case: %F A128076 a(n) = m*A003056 -(m-1)*A002260. %F A128076 a(n) = m*(t+1) + (m-1)*(t*(t+1)/2-n), where t=floor((-1+sqrt(8*n-7))/2). %F A128076 For m = 2: %F A128076 a(n) = 2*A003056 -A002260. %F A128076 a(n) = 2*(t+1)+(t*(t+1)/2-n), where t=floor((-1+sqrt(8*n-7))/2). (End) %F A128076 a(n) = (r^2 + 3*r - 2*n)/2, where r = round(sqrt(2*n)). - _Wesley Ivan Hurt_, Sep 19 2021 %F A128076 a(n) = A105020(n-1)/A002260(n). - _Wesley Ivan Hurt_, Sep 22 2021 %e A128076 First few rows of the triangle are: %e A128076 1; %e A128076 3, 2; %e A128076 5, 4, 3; %e A128076 7, 6, 5, 4; %e A128076 9, 8, 7, 6, 5; %e A128076 ... %p A128076 A128076 := proc(n,k) %p A128076 2*n-k ; %p A128076 end proc: %p A128076 seq(seq( A128076(n,k),k=1..n),n=1..12) ;# _R. J. Mathar_, Sep 27 2021 %t A128076 Table[(Round[Sqrt[2 n]]^2 + 3 Round[Sqrt[2 n]] - 2 n)/2, {n, 100}] (* _Wesley Ivan Hurt_, Sep 19 2021 *) %Y A128076 Cf. A128064, A004736, A000326 (row sums), A003056, A002260, A002024, A131914, A209304, A094727 (rows reversed). %K A128076 nonn,tabl,easy %O A128076 1,2 %A A128076 _Gary W. Adamson_, Feb 14 2007 %E A128076 NAME simplified. - _R. J. Mathar_, Sep 27 2021