cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

This page as a plain text file.
%I A128084 #80 Mar 21 2025 21:57:57
%S A128084 1,1,1,1,2,2,2,1,1,3,5,7,8,8,7,5,3,1,1,4,9,16,24,32,39,44,46,44,39,32,
%T A128084 24,16,9,4,1,1,5,14,30,54,86,125,169,215,259,297,325,340,340,325,297,
%U A128084 259,215,169,125,86,54,30,14,5,1,1,6,20,50,104,190,315,484,699,958,1255,1580,1919
%N A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.
%C A128084 See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.
%C A128084 Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - _Mikhail Gaichenkov_, Feb 08 2023
%H A128084 Paul D. Hanna, <a href="/A128084/b128084.txt">Rows n=0..30 of triangle, in flattened form.</a>
%H A128084 Hasan Arslan, <a href="https://arxiv.org/abs/2404.05099">A combinatorial interpretation of Mahonian numbers of type B</a>, arXiv:2404.05099 [math.CO], 2024.
%H A128084 Thomas Kahle and Christian Stump, <a href="https://arxiv.org/abs/1802.01389">Counting inversions and descents of random elements in finite Coxeter groups</a>, arXiv:1802.01389 [math.CO], 2018-2019.
%H A128084 Ali Kessouri, Moussa Ahmia, Hasan Arslan, and Salim Mesbahi, <a href="https://arxiv.org/abs/2408.02424">Combinatorics of q-Mahonian numbers of type B and log-concavity</a>, arXiv:2408.02424 [math.CO], 2024. See p. 6.
%H A128084 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a>.
%H A128084 A. V. Yurkin, <a href="http://www.mce.biophys.msu.ru/eng/archive/abstracts/mce19/sect1138/doc150220/">On similarity of systems of geometrical and arithmetic triangles</a>, in Mathematics, Computing, Education Conference XIX, 2012.
%H A128084 A. V. Yurkin, <a href="http://arxiv.org/abs/1302.6287">New view on the diffraction discovered by Grimaldi and Gaussian beams</a>, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
%H A128084 A. V. Yurkin, <a href="https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-38404-2/new-binomial-and-new-view-on-light-theory">New binomial and new view on light theory</a>, LAP Lambert Academic Publishing, 2013, 78 pages.
%e A128084 The row sums form A000165, the even double factorial numbers:
%e A128084   [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
%e A128084 Triangle begins:
%e A128084  1;
%e A128084  1, 1;
%e A128084  1, 2,  2,  2,  1;
%e A128084  1, 3,  5,  7,  8,  8,   7,   5,   3,   1;
%e A128084  1, 4,  9, 16, 24, 32,  39,  44,  46,  44,  39,  32,  24,  16,   9,   4,   1;
%e A128084  ...
%t A128084 t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* _Jean-François Alcover_, Mar 06 2013, translated from Pari *)
%o A128084 (PARI) {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
%o A128084 for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
%o A128084 (PARI) row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ _Andrew Howroyd_, Mar 21 2025
%Y A128084 Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).
%Y A128084 The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858.
%K A128084 nonn,tabf
%O A128084 0,5
%A A128084 _Paul D. Hanna_, Feb 14 2007