cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128101 Triangle read by rows: T(n,k) is the number of ways to tile a 4 X n rectangle with k pieces of 2 X 2 tiles and 4(n-k) pieces of 1 X 1 tiles (0<=k<=2*floor(n/2)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 4, 1, 9, 16, 8, 1, 1, 12, 37, 34, 9, 1, 15, 67, 105, 65, 15, 1, 1, 18, 106, 248, 250, 108, 16, 1, 21, 154, 490, 726, 522, 176, 24, 1, 1, 24, 211, 858, 1736, 1824, 994, 260, 25, 1, 27, 277, 1379, 3604, 5148, 4090, 1770, 385, 35, 1, 1, 30, 352, 2080
Offset: 0

Views

Author

Emeric Deutsch, Feb 19 2007

Keywords

Comments

Row 2n has 2n+1 terms; row 2n+1 has 2n+1 terms.

Examples

			Triangle starts:
1;
1;
1,3,1;
1,6,4;
1,9,16,8,1;
1,12,37,34,9;
1,15,67,105,65,15,1;
		

References

  • S. Heubach, Tiling an m X n area with squares of size up to k X k (m <= 5), Congressus Numerantium 140 (1999), pp. 43-64.

Crossrefs

Cf. A054854 (row sums), A008585, A080855, A128102.

Programs

  • Maple
    G:=(1-t*z)/(1-z-t*z-2*t*z^2-t^2*z^2+t^2*z^3+t^3*z^3): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[#, t]& /@ CoefficientList[(1 - t z)/(1 - z - t z - 2 t z^2 - t^2 z^2 + t^2 z^3 + t^3 z^3) + O[z]^12, z]  // Flatten (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.=(1-tz)/(1-z-tz-2tz^2-t^2*z^2+t^2*z^3+t^3*z^3).
Sum (T(n,k), k=0..2*floor(n/2) ) = A054854(n).
T(n,1)=3(n-1)=A008585(n-1).
T(n,2)=A080855(n-2).
Sum(k*T(n,k), k=0..2*floor(n/2)) = A128102(n).
T(n,3) = (n-3)*(9*n^2-63*n+124)/2, n>=3. - R. J. Mathar, Aug 23 2016
T(n,4) = (3*n-13)*(9*n^3-123*n^2+602*n-1024)/8, n>=4. - R. J. Mathar, Aug 23 2016