This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128106 #12 Jun 21 2014 16:20:04 %S A128106 1,2,4,8,10,16,18,20,26,32,34,36,40,50,52,58,64,68,72,74,80,82,90,98, %T A128106 100,104,106,116,122,128,130,136,144,146,148,160,162,164,170,178,180, %U A128106 194,196,200,202,208,212,218,226,232,234,242,244,250,256,260,272,274 %N A128106 Sizes of possible gaps around a Gaussian prime: 1 and the even numbers in A001481. %C A128106 For a given Gaussian prime u, the size of its gap is the minimum of norm(u-v) as v varies over all other Gaussian primes, where norm(a+b*i)=a^2+b^2. Only the small Gaussian primes 1+i and 2+i (and their associates and reflections) have gaps of diameter 1. %H A128106 Vincenzo Librandi, <a href="/A128106/b128106.txt">Table of n, a(n) for n = 1..10000</a> %t A128106 q=12; imax=2*q^2; lst=Select[Union[Flatten[Table[2*x^2+2*y^2, {x,0,q}, {y,0,x}]]], #<=imax&]; Join[{1},Drop[lst,1]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 20 2011 *) %o A128106 (Sage) %o A128106 def A128106_list(max): %o A128106 R = []; s = 1; sq = 1 %o A128106 for n in (0..max//2): %o A128106 if n == s: %o A128106 sq += 1; %o A128106 s = sq*sq; %o A128106 for k in range(sq): %o A128106 if is_square(n-k*k): %o A128106 R.append(2*n) %o A128106 break %o A128106 R[0] = 1 %o A128106 return R %o A128106 A128106_list(274) # _Peter Luschny_, Jun 20 2014 %Y A128106 Cf. A128107, A128108, A128109. %K A128106 nonn %O A128106 1,2 %A A128106 _T. D. Noe_, Feb 15 2007