A128119 Square array T(n,m) read by antidiagonals: number of sublattices of index m in generic n-dimensional lattice.
1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 13, 7, 1, 1, 31, 40, 35, 6, 1, 1, 63, 121, 155, 31, 12, 1, 1, 127, 364, 651, 156, 91, 8, 1, 1, 255, 1093, 2667, 781, 600, 57, 15, 1, 1, 511, 3280, 10795, 3906, 3751, 400, 155, 13, 1, 1, 1023, 9841, 43435, 19531, 22932, 2801, 1395, 130, 18, 1
Offset: 1
Examples
Array starts: 1,1,1,1,1,1,1,1,1, 1,3,4,7,6,12,8,15,13, 1,7,13,35,31,91,57,155,130, 1,15,40,155,156,600,400,1395,1210, 1,31,121,651,781,3751,2801,11811,11011, 1,63,364,2667,3906,22932,19608,97155,99463, 1,127,1093,10795,19531,138811,137257,788035,896260, 1,255,3280,43435,97656,836400,960800,6347715,8069620,
References
- Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]
Links
- Álvar Ibeas, First 100 antidiagonals, flattened
- Michael Baake, Solution of the coincidence problem in dimensions d≤4, arXiv:math/0605222 [math.MG], 2006. [Appx. A]
- B. Gruber, Alternative formulas for the number of sublattices, Acta Cryst. A53 (1997) 807-808.
- Yi Ming Zou, Gaussian binomials and the number of sublattices, arXiv:math/0610684 [math.CO], 2006.
Crossrefs
Programs
-
Mathematica
T[n_, m_] := If[m == 1, 1, Product[{p, e} = pe; (p^(e+j)-1)/(p^j-1), {pe, FactorInteger[m]}, {j, 1, n-1}]]; Table[T[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 10 2018 *)
-
PARI
T(n,m)=local(k,v);v=factor(m);k=matsize(v)[1];prod(i=1,k,prod(j=1,n-1,(v[i,1]^(v[i,2]+j)-1)/(v[i,1]^j-1)))
Formula
Dirichlet g.f. of n-th row: Product_{i=0..n-1} zeta(s-i).
If m is squarefree, T(n,m) = A000203(m^(n-1)). - Álvar Ibeas, Jan 17 2015
T(n, Product(p^e)) = Product(Gaussian_poly[e+n-1, e]p). - _Álvar Ibeas, Oct 31 2015
Extensions
Edited by Charles R Greathouse IV, Oct 28 2009
Comments