cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128139 Triangle read by rows: matrix product A004736 * A128132.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 7, 5, 1, 6, 9, 10, 9, 6, 1, 7, 11, 13, 13, 11, 7, 1, 8, 13, 16, 17, 16, 13, 8, 1, 9, 15, 19, 21, 21, 19, 15, 9, 1, 10, 17, 22, 25, 26, 25, 22, 17, 10
Offset: 0

Views

Author

Gary W. Adamson, Feb 16 2007

Keywords

Comments

A077028 with the final term in each row omitted.
Interchanging the factors in the matrix product leads to A128140 = A128132 * A004736.
From Gary W. Adamson, Jul 01 2012: (Start)
Alternatively, antidiagonals of an array A(n,k) of sequences with arithmetic progressions as follows:
1, 2, 3, 4, 5, 6, ...
1, 3, 5, 7, 9, 11, ...
1, 4, 7, 10, 13, 16, ...
1, 5, 9, 13, 17, 21, ...
... (End)
From Gary W. Adamson, Jul 02 2012: (Start)
A summation generalization for Sum_{k>=1} 1/(A(n,k)*A(n,k+1)) (formulas copied from A002378, A000466, A085001, A003185):
1 = 1/(1)*(2) + 1/(2)*(3) + 1/(3)*(4) + ...
1 = 2/(1)*(3) + 2/(3)*(5) + 2/(5)*(7) + ...
1 = 3/(1)*(4) + 3/(4)*(7) + 3/(7)*(10) + ...
1 = 4/(1)*(5) + 4/(5)*(9) + 4/(9)*(13) + ...
...
As a summation of terms equating to a definite integral:
Integral_{0..1} dx/(1+x) = ... 1 - 1/2 + 1/3 - 1/4 + ... = log(2).
Integral_{0..1} dx/(1+x^2) = 1 - 1/3 + 1/5 - 1/7 + ... = Pi/4 (see A157142)
Integral_{0..1} dx/(1+x^3) = 1 - 1/4 + 1/7 - 1/10 + ... (see A016777)
Integral_{0..1} dx/(1+x^4) = 1 - 1/5 + 1/9 - 1/13 + ... (see A016813). (End)

Examples

			First few rows of the triangle:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  5,  4;
  1,  5,  7,  7,  5;
  1,  6,  9, 10,  9,  6;
  1,  7, 11, 13, 13, 11,  7;
  1,  8, 13, 16, 17, 16, 13,  8;
  1,  9, 15, 19, 21, 21, 19, 15,  9;
  1, 10, 17, 22, 25, 26, 25, 22, 17, 10;
  ...
		

Crossrefs

Cf. A004736, A128132, A128140, A004006 (row sums).

Formula

A004736 * A128132 as infinite lower triangular matrices.
T(n,k) = k*(1+n-k)+1 = 1 + A094053(n+1,1+n-k). - R. J. Mathar, Jul 09 2012