cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128152 Numerator of Sum_{k=0..n} 1/binomial(n,k)^4.

This page as a plain text file.
%I A128152 #9 Feb 16 2025 08:33:04
%S A128152 1,2,33,164,20825,10017,25940593,34743416,3074035689,672229195,
%T A128152 13443874324243,431453199593,53678600587865227,33768054132971557,
%U A128152 813464644344955,748569723383876272,67454811525665973337193
%N A128152 Numerator of Sum_{k=0..n} 1/binomial(n,k)^4.
%C A128152 p^k divides a(p^k-1) for prime p and integer k > 0. p divides a(p-2) for prime p > 5.
%H A128152 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinomialSums.html">Binomial Sums</a>.
%F A128152 a(n) = numerator(Sum_{k=0..n} 1/binomial(n,k)^4).
%t A128152 Table[ Numerator[ Sum[ 1 / Binomial[n,k]^4, {k,0,n} ] ], {n,0,50} ]
%Y A128152 Cf. A046825 (numerator of Sum_{k=0..n} 1/C(n, k)).
%Y A128152 Cf. A100516 (numerator of Sum_{k=0..n} 1/C(n, k)^2).
%Y A128152 Cf. A100518 (numerator of Sum_{k=0..n} 1/C(n, k)^3).
%K A128152 frac,nonn
%O A128152 0,2
%A A128152 _Alexander Adamchuk_, May 10 2007