This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128176 #37 Apr 19 2020 08:35:49 %S A128176 1,1,1,2,2,1,2,4,3,1,3,6,7,4,1,3,9,13,11,5,1,4,12,22,24,16,6,1,4,16, %T A128176 34,46,40,22,7,1,5,20,50,80,86,62,29,8,1,5,25,70,130,166,148,91,37,9, %U A128176 1,6,30,95,200,296,314,239,128,46,10,1 %N A128176 A128174 * A007318. %C A128176 Row Sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...). %C A128176 A007318 * A128174 = A128175. %C A128176 From _Peter Bala_, Aug 14 2014: (Start) %C A128176 Riordan array ( 1/((1 - x^2)*(1 - x)), x/(1 - x) ). %C A128176 Let B_n be the set of length n nonzero binary words ending in an even number (possibly 0) of 0's. Then T(n,k) is the number of words in B_n having k 1's. An example is given below. (End) %H A128176 G. C. Greubel, <a href="/A128176/b128176.txt">Table of n, a(n) for the first 100 rows, flattened</a> %H A128176 Georg Cantor, <a href="http://resolver.sub.uni-goettingen.de/purl?PPN237853094">Gesammelte Abhandlungen mathematischen und philosophischen Inhalts</a>, Part IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, Springer, Berlin, 1932. See p. 434. %F A128176 A128174 * A007318 (Pascal's triangle), as infinite lower triangular matrices. %F A128176 From _Peter Bala_, Aug 14 2014: (Start) %F A128176 Working with a row and column offset of 0 we have T(n,k) = Sum_{i = 0..floor(n/2)} binomial(n - 2*i,k). %F A128176 O.g.f.: 1/( (1 - z^2)*(1 - z*(1 + x)) ) = Sum_{n >= 0} R(n,x)*z^n = 1 + (1 + x)*z + (2 + 2*x + x^2)*z^2 + .... %F A128176 The row polynomials satisfy R(n+2,x) - R(n,x) = (1 + x)^(n+1). (End) %F A128176 From _Hartmut F. W. Hoft_, Mar 15 2017: (Start) %F A128176 Using offset 0, the triangle has the Pascal Triangle recursion pattern: %F A128176 T(n, 0) = 1 + floor(n/2) and T(n, n) = 1, for n >= 0; %F A128176 T(n, k) = T(n-1, k-1) + T(n-1, k) for n > 0 and 0 < k < n. (End) %e A128176 First few rows of the triangle are: %e A128176 1; %e A128176 1, 1; %e A128176 2, 2, 1; %e A128176 2, 4, 3, 1; %e A128176 3, 6, 7, 4, 1; %e A128176 3, 9, 13, 11, 5, 1; %e A128176 4, 12, 22, 24, 16, 6, 1; %e A128176 4, 16, 34, 46, 40, 22, 7, 1; %e A128176 ... %e A128176 From _Peter Bala_, Aug 14 2014: (Start) %e A128176 Row 4: [2,4,3,1]. %e A128176 k Binary words in B_4 with k 1's Number %e A128176 - - - - - - - - - - - - - - - - - - - - - - - - - - %e A128176 1 0001, 0100 2 %e A128176 2 0011, 0101, 1001, 1100 4 %e A128176 3 0111, 1011, 1101 3 %e A128176 4 1111 1 %e A128176 - - - - - - - - - - - - - - - - - - - - - - - - - - %e A128176 The infinitesimal generator matrix begins %e A128176 0 %e A128176 1 0 %e A128176 1 2 0 %e A128176 -1 1 3 0 %e A128176 1 -1 1 4 0 %e A128176 -1 1 -1 1 5 0 %e A128176 ... %e A128176 Cf. A132440. (End) %t A128176 (* Dot product of two lower triangular matrices *) %t A128176 dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]] %t A128176 dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]] %t A128176 (* The pure function in the first argument computes A128174 *) %t A128176 a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r] %t A128176 TableForm[a128176[7]] (* triangle *) %t A128176 Flatten[a128176[9]] (* data *) (* _Hartmut F. W. Hoft_, Mar 15 2017 *) %t A128176 T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n,0,20}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Sep 30 2017 *) %o A128176 (PARI) for(n=0, 10, for(k=0,n, print1(sum(i=0,floor(n/2), binomial(n - 2*i,k)), ", "))) \\ _G. C. Greubel_, Sep 30 2017 %Y A128176 Cf. A000975, A128175, A007318. %Y A128176 Cf. A035317 (mirror). [_Johannes W. Meijer_, Jul 20 2011] %K A128176 nonn,tabl %O A128176 1,4 %A A128176 _Gary W. Adamson_, Feb 17 2007