This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128177 #21 Jan 05 2025 23:41:56 %S A128177 1,2,1,4,2,1,6,4,2,1,9,6,4,2,1,12,9,6,4,2,1,16,12,9,6,4,2,1,20,16,12, %T A128177 9,6,4,2,1,25,20,16,12,9,6,4,2,1,30,25,20,16,12,9,6,4,2,1,36,30,25,20, %U A128177 16,12,9,6,4,2,1,42,36,30,25,20,16,12,9,6,4,2,1 %N A128177 A128174 * A004736 as infinite lower triangular matrices. %C A128177 n-th row has n nonzero terms of A002620: (1, 2, 4, 6, 9, 12, 16, ...) in reverse. %C A128177 Row sums = A002623: (1, 3, 7, 13, 22, 34, 50, ...). %F A128177 From _Ridouane Oudra_, Mar 23 2024: (Start) %F A128177 T(n, k) = A002620(n-k+2), with 1 <= k <= n; %F A128177 T(n, k) = floor((n-k+2)^2/4); %F A128177 T(n, k) = (1/2)*floor((n-k+2)^2/2); %F A128177 T(n, k) = (1/8)*(2*(n-k+2)^2 + (-1)^(n-k) - 1). (End) %e A128177 First few rows of the triangle: %e A128177 1; %e A128177 2, 1; %e A128177 4, 2, 1; %e A128177 6, 4, 2, 1; %e A128177 9, 6, 4, 2, 1; %e A128177 12, 9, 6, 4, 2, 1; %e A128177 ... %p A128177 seq(seq(floor((n-k+2)^2/4), k=1..n), n=1..20); # _Ridouane Oudra_, Mar 23 2024 %t A128177 T[n_,k_]:=Floor[(n-k+2)^2/4];Table[T[n,k],{n,12},{k,n}]//Flatten (* _James C. McMahon_, Jan 05 2025 *) %o A128177 (PARI) lista(nn) = {t128174 = matrix(nn, nn, n, k, (k<=n)*(1+(-1)^(n-k))/2); t004736 = matrix(nn, nn, n, k, (k<=n)*(n - k + 1)); t128177 = t128174*t004736; for (n = 1, nn, for (k = 1, n, print1(t128177[n, k], ", ");););} \\ _Michel Marcus_, Feb 11 2014 %Y A128177 Cf. A128174, A004736, A002623, A002620. %K A128177 nonn,tabl %O A128177 1,2 %A A128177 _Gary W. Adamson_, Feb 17 2007 %E A128177 Partially edited and more terms from _Michel Marcus_, Feb 11 2014