This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128179 #17 Feb 15 2022 09:53:55 %S A128179 1,0,2,1,0,3,0,2,0,4,1,0,3,0,5,0,2,0,4,0,6,1,0,3,0,5,0,7,0,2,0,4,0,6, %T A128179 0,8,1,0,3,0,5,0,7,0,9,0,2,0,4,0,6,0,8,0,10 %N A128179 A097807 * A002260. %C A128179 Row sums = A002620: (1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...). %C A128179 General case see A211161. Let B and C be sequences. By b(n) and c(n) denote elements B and C respectively. Table T(n,k) = b(n), if k is odd, c(k) if k is even read by antidiagonals. For this sequence b(n)=n, b(n)=A000027(n), c(n)=0, c(n)=A000004(n). - _Boris Putievskiy_, Feb 05 2013 %H A128179 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %F A128179 A097807 * A002260 as infinite lower triangular matrices. k-th column = (k, 0, k, 0, ...). %F A128179 From _Boris Putievskiy_, Feb 05 2013: (Start) %F A128179 T(n,k) = (1-(-1)^k)*n/2; %F A128179 a(n) = (1-(-1)^A004736(n))*A002260(n)/2; %F A128179 a(n) = (1-(-1)^j)*i/2, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2). (End) %e A128179 From _Boris Putievskiy_, Feb 05 2013: (Start) %e A128179 The start of the sequence as a table: %e A128179 1, 0, 1, 0, 1, 0, 1, ... %e A128179 2, 0, 2, 0, 2, 0, 2, ... %e A128179 3, 0, 3, 0, 3, 0, 3, ... %e A128179 4, 0, 4, 0, 4, 0, 4, ... %e A128179 5, 0, 5, 0, 5, 0, 5, ... %e A128179 6, 0, 6, 0, 6, 0, 6, ... %e A128179 7, 0, 7, 0, 7, 0, 7, ... %e A128179 ... (End) %e A128179 First few rows of the triangle: %e A128179 1; %e A128179 0, 2; %e A128179 1, 0, 3; %e A128179 0, 2, 0, 4; %e A128179 1, 0, 3, 0, 5; %e A128179 0, 2, 0, 4, 0, 6; %e A128179 1, 0, 3, 0, 5, 0, 7; %e A128179 ... %Y A128179 Cf. A000004, A000027, A002260, A002620, A004736, A097807, A211161. %K A128179 nonn,tabl %O A128179 1,3 %A A128179 _Gary W. Adamson_, Feb 17 2007