This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128282 #62 Jan 06 2025 20:03:56 %S A128282 1,2,2,3,4,3,5,6,6,5,7,8,9,8,7,10,11,12,12,11,10,13,14,15,16,15,14,13, %T A128282 17,18,19,20,20,19,18,17,21,22,23,24,25,24,23,22,21,26,27,28,29,30,30, %U A128282 29,28,27,26,31,32,33,34,35,36,35,34,33,32,31,37,38,39,40,41,42,42,41,40,39,38,37 %N A128282 Regular symmetric triangle, read by rows, whose left half consists of the positive integers. %C A128282 Left half triangle is A000027 (positive integers) (compare with example triangle): %C A128282 1; %C A128282 2; %C A128282 3, 4; %C A128282 5, 6; %C A128282 7, 8, 9; %C A128282 10, 11, 12; %C A128282 13, 14, 15, 16; %C A128282 17, 18, 19, 20; %C A128282 ... %H A128282 Jianrui Xie, <a href="https://arxiv.org/abs/2105.10752">On Symmetric Invertible Binary Pairing Functions</a>, arXiv:2105.10752 [math.CO], 2021. See (6) p. 3 and p. 5 %F A128282 T(n,k) = T(n,n-k). %F A128282 T(2*n,n) = (n+1)^2 = A000290(n+1). %F A128282 T(n,0) = T(n,n) = A033638(n+1). %F A128282 From _Yu-Sheng Chang_, May 25 2020: (Start) %F A128282 O.g.f.: F(z,v) = (z/((-z+1)^3*(z+1)) - v^2*z/((-v*z+1)^3*(v*z+1)))/(1-v) + 1/((-z+1)*(-v*z+1)*(-v*z^2+1)). %F A128282 T(n,k) = [v^k] (1/8)*(1-v^(n+1))*(2*(n+1)^2 - 1 - (-1)^n)/(1-v) + (v^(2+n) + (1/2*((sqrt(v)-1)^2*(-1)^n - (sqrt(v)+1)^2))*v^((1/2)*n + 1/2) + 1)/(1-v)^2. %F A128282 T(n,k) = 1 + (1/4)*n*(n+1) + min(k, n-k) + (1/2)*ceiling((1/2)*n). (End) %F A128282 T(n,k) = ((n+k-1)^2 - ((n+k-1) mod 2))/4 + min(n,k) for n and k >= 1, as an array. See Xie. - _Michel Marcus_, May 25 2021 %e A128282 Triangle begins: %e A128282 1; %e A128282 2, 2; %e A128282 3, 4, 3; %e A128282 5, 6, 6, 5; %e A128282 7, 8, 9, 8, 7; %e A128282 10, 11, 12, 12, 11, 10; %e A128282 13, 14, 15, 16, 15, 14, 13; %e A128282 17, 18, 19, 20, 20, 19, 18, 17; %e A128282 ... %p A128282 A := proc(n,k) ## n >= 0 and k = 0 .. n %p A128282 1+(1/4)*n*(n+1)+min(k, n-k)+(1/2)*ceil((1/2)*n) %p A128282 end proc: # _Yu-Sheng Chang_, May 25 2020 %t A128282 T[n_,k_]:=1+n*(n+1)/4+Min[k,n-k]+Ceiling[n/2]/2;Table[T[n,k],{n,0,11},{k,0,n}]//Flatten (* _James C. McMahon_, Jan 06 2025 *) %Y A128282 Cf. A000027, A000290, A033638 (1st column and right diagonal). %K A128282 nonn,tabl %O A128282 0,2 %A A128282 _Philippe Deléham_, May 03 2007 %E A128282 Name edited by _Michel Marcus_, May 25 2021