cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128282 Regular symmetric triangle, read by rows, whose left half consists of the positive integers.

This page as a plain text file.
%I A128282 #62 Jan 06 2025 20:03:56
%S A128282 1,2,2,3,4,3,5,6,6,5,7,8,9,8,7,10,11,12,12,11,10,13,14,15,16,15,14,13,
%T A128282 17,18,19,20,20,19,18,17,21,22,23,24,25,24,23,22,21,26,27,28,29,30,30,
%U A128282 29,28,27,26,31,32,33,34,35,36,35,34,33,32,31,37,38,39,40,41,42,42,41,40,39,38,37
%N A128282 Regular symmetric triangle, read by rows, whose left half consists of the positive integers.
%C A128282 Left half triangle is A000027 (positive integers) (compare with example triangle):
%C A128282    1;
%C A128282    2;
%C A128282    3,  4;
%C A128282    5,  6;
%C A128282    7,  8,  9;
%C A128282   10, 11, 12;
%C A128282   13, 14, 15, 16;
%C A128282   17, 18, 19, 20;
%C A128282   ...
%H A128282 Jianrui Xie, <a href="https://arxiv.org/abs/2105.10752">On Symmetric Invertible Binary Pairing Functions</a>, arXiv:2105.10752 [math.CO], 2021. See (6) p. 3 and p. 5
%F A128282 T(n,k) = T(n,n-k).
%F A128282 T(2*n,n) = (n+1)^2 = A000290(n+1).
%F A128282 T(n,0) = T(n,n) = A033638(n+1).
%F A128282 From _Yu-Sheng Chang_, May 25 2020: (Start)
%F A128282 O.g.f.: F(z,v) = (z/((-z+1)^3*(z+1)) - v^2*z/((-v*z+1)^3*(v*z+1)))/(1-v) + 1/((-z+1)*(-v*z+1)*(-v*z^2+1)).
%F A128282 T(n,k) = [v^k] (1/8)*(1-v^(n+1))*(2*(n+1)^2 - 1 - (-1)^n)/(1-v) + (v^(2+n) + (1/2*((sqrt(v)-1)^2*(-1)^n - (sqrt(v)+1)^2))*v^((1/2)*n + 1/2) + 1)/(1-v)^2.
%F A128282 T(n,k) = 1 + (1/4)*n*(n+1) + min(k, n-k) + (1/2)*ceiling((1/2)*n). (End)
%F A128282 T(n,k) = ((n+k-1)^2 - ((n+k-1) mod 2))/4 + min(n,k) for n and k >= 1, as an array. See Xie. - _Michel Marcus_, May 25 2021
%e A128282 Triangle begins:
%e A128282    1;
%e A128282    2,  2;
%e A128282    3,  4,  3;
%e A128282    5,  6,  6,  5;
%e A128282    7,  8,  9,  8,  7;
%e A128282   10, 11, 12, 12, 11, 10;
%e A128282   13, 14, 15, 16, 15, 14, 13;
%e A128282   17, 18, 19, 20, 20, 19, 18, 17;
%e A128282   ...
%p A128282 A := proc(n,k) ## n >= 0 and k = 0 .. n
%p A128282     1+(1/4)*n*(n+1)+min(k, n-k)+(1/2)*ceil((1/2)*n)
%p A128282 end proc: # _Yu-Sheng Chang_, May 25 2020
%t A128282 T[n_,k_]:=1+n*(n+1)/4+Min[k,n-k]+Ceiling[n/2]/2;Table[T[n,k],{n,0,11},{k,0,n}]//Flatten (* _James C. McMahon_, Jan 06 2025 *)
%Y A128282 Cf. A000027, A000290, A033638 (1st column and right diagonal).
%K A128282 nonn,tabl
%O A128282 0,2
%A A128282 _Philippe Deléham_, May 03 2007
%E A128282 Name edited by _Michel Marcus_, May 25 2021