This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128307 #17 Feb 08 2022 19:25:21 %S A128307 1,0,1,1,0,1,2,1,0,1,4,2,1,0,1,8,4,2,1,0,1,16,8,4,2,1,0,1,32,16,8,4,2, %T A128307 1,0,1,64,32,16,8,4,2,1,0,1,128,64,32,16,8,4,2,1,0,1,256,128,64,32,16, %U A128307 8,4,2,1,0,1,512,256,128,64,32,16,8,4,2,1,0 %N A128307 Triangle, (1, 0, 1, 2, 4, 8, ...) in every column. %C A128307 Row sums = (1, 1, 2, 4, 8, ...). A128308 = binomial transform of A128307. %C A128307 Riordan array ( 1 + x^2/(1 - 2*x), x ). T(n,k) gives the number of compositions of n of the form 1 + 1 + ... + 1 + a_1 + ... + a_m beginning with k 1's and with a_1 > 1. See Shapiro, Section 5. An example is given below. - _Peter Bala_, Aug 18 2014 %H A128307 Harvey P. Dale, <a href="/A128307/b128307.txt">Table of n, a(n) for n = 1..1000</a> %H A128307 L. Shapiro, <a href="https://www.semanticscholar.org/paper/A-Survey-of-the-Riordan-Group-Getie/94e657b0dc55bd38408080fd86189ae8bcf0ec8a">A survey of the Riordan group</a> %F A128307 (1, 0, 1, 2, 4, 8, ...) in every column. %e A128307 First few rows of the triangle: %e A128307 1; %e A128307 0, 1; %e A128307 1, 0, 1; %e A128307 2, 1, 0, 1; %e A128307 4, 2, 1, 0, 1; %e A128307 8, 4, 2, 1, 0, 1; %e A128307 ... %e A128307 From _Peter Bala_, Aug 18 2014: (Start) %e A128307 Row 4: [4,2,1,0,1] %e A128307 Compositions Number %e A128307 k = 0 4, 3 + 1, 2 + 2, 2 + 1 + 1 4 %e A128307 k = 1 1 + 3, 1 + 2 + 1 2 %e A128307 k = 2 1 + 1 + 2 1 %e A128307 k = 3 0 %e A128307 k = 4 1 + 1 + 1 + 1 1 %e A128307 (End) %t A128307 Join[{1,0,1},Table[Join[NestWhileList[#/2&,2^n,#!=1&],{0,1}],{n,0,10}]]//Flatten (* _Harvey P. Dale_, Nov 25 2018 *) %Y A128307 Cf. A007318, A128308. %K A128307 nonn,tabl %O A128307 1,7 %A A128307 _Gary W. Adamson_, Feb 25 2007 %E A128307 More terms from _Harvey P. Dale_, Nov 25 2018