cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128320 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n that are to the right of T(n,k) with the vector of terms in column k that are above T(n,k) for n>k+1>0, with the odd numbers in the secondary diagonal and all 1's in the main diagonal.

This page as a plain text file.
%I A128320 #12 Jul 03 2024 19:26:00
%S A128320 1,1,1,4,3,1,17,8,5,1,98,41,12,7,1,622,234,73,16,9,1,4512,1602,418,
%T A128320 113,20,11,1,35373,11976,3110,650,161,24,13,1,300974,98541,23920,5242,
%U A128320 930,217,28,15,1,2722070,866942,207549,41304,8094,1258,281,32,17,1
%N A128320 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n that are to the right of T(n,k) with the vector of terms in column k that are above T(n,k) for n>k+1>0, with the odd numbers in the secondary diagonal and all 1's in the main diagonal.
%H A128320 G. C. Greubel, <a href="/A128320/b128320.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A128320 T(n,k) = Sum_{j=0..n-1-k} T(n,k+j+1)*T(k+j,k) for n > k+1 > 0, with T(n,n) = 1 and T(n, n-1) = 2*n-1 for k >= 0.
%e A128320 Illustrate the recurrence by:
%e A128320   T(n,k) = [T(n,k+1),T(n,k+2), ..,T(n,n)]*[T(k,k),T(k+1,k),..,T(n-1,k)]:
%e A128320   T(3,0) = [8,5,1]*[1,1,4]~ = 8*1 + 5*1 + 1*4 = 17;
%e A128320   T(4,1) = [12,7,1]*[1,3,8]~ = 12*1 + 7*3 + 1*8 = 41;
%e A128320   T(5,1) = [73,16,9,1]*[1,3,8,41]~ = 73*1 + 16*3 + 9*8 + 1*41 = 234;
%e A128320   T(6,2) = [113,20,11,1]*[1,5,12,73]~ = 113*1 + 20*5 + 11*12 + 1*73 = 418.
%e A128320 Triangle begins:
%e A128320          1;
%e A128320          1,       1;
%e A128320          4,       3,       1;
%e A128320         17,       8,       5,      1;
%e A128320         98,      41,      12,      7,     1;
%e A128320        622,     234,      73,     16,     9,     1;
%e A128320       4512,    1602,     418,    113,    20,    11,    1;
%e A128320      35373,   11976,    3110,    650,   161,    24,   13,   1;
%e A128320     300974,   98541,   23920,   5242,   930,   217,   28,  15,  1;
%e A128320    2722070,  866942,  207549,  41304,  8094,  1258,  281,  32, 17,  1;
%e A128320   26118056, 8139602, 1885166, 377757, 65088, 11762, 1634, 353, 36, 19, 1;
%t A128320 T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==n-1, 2*n-1, Sum[T[n,k+j+1] *T[k+j,k], {j,0,n-k-1}]]];
%t A128320 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 25 2024 *)
%o A128320 (PARI)
%o A128320 {T(n,k)=if(n==k,1, if(n==k+1,2*n-1, sum(i=0,n-k-1, T(n,k+i+1)*T(k+i,k))))};
%o A128320 for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
%o A128320 (Magma)
%o A128320 function T(n,k) // T = A128320
%o A128320    if k eq n then return 1;
%o A128320    elif k eq n-1 then return 2*n-1;
%o A128320    else return (&+[T(n, k+j+1)*T(k+j, k): j in [0..n-k-1]]);
%o A128320    end if;
%o A128320 end function;
%o A128320 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 25 2024
%o A128320 (SageMath)
%o A128320 @CachedFunction
%o A128320 def T(n,k): # T = A128320
%o A128320     if k==n: return 1
%o A128320     elif k==n-1: return 2*n-1
%o A128320     else: return sum(T(n, k+j+1)*T(k+j, k) for j in range(n-k))
%o A128320 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jun 25 2024
%Y A128320 Columns k: A128321 (k=0), A128322 (k=1), A128323 (k=2).
%Y A128320 Sums: A128324 (row sums).
%Y A128320 Variant of: A115080.
%K A128320 nonn,tabl
%O A128320 0,4
%A A128320 _Paul D. Hanna_, Feb 25 2007