cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128325 Rectangular table, read by antidiagonals, where the g.f.s of row n, R(x,n), satisfy: R(x,n+1) = R(G(x),n) for n>=0 and x*R(x,0) = G(x) = x + x*G(G(x)) is the g.f. of A030266.

This page as a plain text file.
%I A128325 #9 May 05 2025 23:40:48
%S A128325 1,1,1,1,1,2,1,1,3,6,1,1,4,12,23,1,1,5,20,57,104,1,1,6,30,114,305,531,
%T A128325 1,1,7,42,200,712,1787,2982,1,1,8,56,321,1435,4772,11269,18109,1,1,9,
%U A128325 72,483,2608,10900,33896,75629,117545,1,1,10,90,692,4389,22219,86799
%N A128325 Rectangular table, read by antidiagonals, where the g.f.s of row n, R(x,n), satisfy: R(x,n+1) = R(G(x),n) for n>=0 and x*R(x,0) = G(x) = x + x*G(G(x)) is the g.f. of A030266.
%C A128325 Row n equals 1 + (n+2)-th self-composition of the g.f. G(x) of A030266: R(x,0) = 1 + G(G(x)); R(x,1) = 1 + G(G(G(x))); R(x,2) = 1 + G(G(G(G(x)))); etc.
%F A128325 Let R(x,n) denote the g.f. of row n of this table, then
%F A128325 R(x,n) = 1 + x*Product_{k=0..n+1} R(x,k),
%F A128325 R(x,n) = 1 + x/[1 - x*Sum_{k=1..n+2} R(x,k) ].
%e A128325 Consider the infinite system of simultaneous equations:
%e A128325   A = 1 + x*A*B;
%e A128325   B = 1 + x*A*B*C;
%e A128325   C = 1 + x*A*B*C*D;
%e A128325   D = 1 + x*A*B*C*D*E;
%e A128325   E = 1 + x*A*B*C*D*E*F; ...
%e A128325 The unique solution to the variables are:
%e A128325   A = R(x,0), B = R(x,1), C = R(x,2), D = R(x,3), E = R(x,4), etc.,
%e A128325 where R(x,n) denotes the g.f. of row n of this table and satisfies:
%e A128325   R(x,1) = R(x*A,0); R(x,2) = R(x*A,1); R(x,3) = R(x*A,2); etc.
%e A128325 The row g.f.s are also related by:
%e A128325   R(x,0) = 1 + x/(1 - x*R(x,1) - x*R(x,2));
%e A128325   R(x,1) = 1 + x/(1 - x*R(x,1) - x*R(x,2) - x*R(x,3));
%e A128325   R(x,2) = 1 + x/(1 - x*R(x,1) - x*R(x,2) - x*R(x,3) - x*R(x,4)); etc.
%e A128325 The initial rows of this table begin:
%e A128325   R(x,0): [1, 1,  2,   6,   23,   104,    531,    2982,    18109, ...];
%e A128325   R(x,1): [1, 1,  3,  12,   57,   305,   1787,   11269,    75629, ...];
%e A128325   R(x,2): [1, 1,  4,  20,  114,   712,   4772,   33896,   253102, ...];
%e A128325   R(x,3): [1, 1,  5,  30,  200,  1435,  10900,   86799,   720074, ...];
%e A128325   R(x,4): [1, 1,  6,  42,  321,  2608,  22219,  196910,  1805899, ...];
%e A128325   R(x,5): [1, 1,  7,  56,  483,  4389,  41531,  406441,  4095749, ...];
%e A128325   R(x,6): [1, 1,  8,  72,  692,  6960,  72512,  777888,  8559852, ...];
%e A128325   R(x,7): [1, 1,  9,  90,  954, 10527, 119832, 1399755, 16720998, ...];
%e A128325   R(x,8): [1, 1, 10, 110, 1275, 15320, 189275, 2392998, 30865353, ...];
%e A128325   R(x,9): [1, 1, 11, 132, 1661, 21593, 287859, 3918189, 54301621, ...];
%e A128325   R(x,10):[1, 1, 12, 156, 2118, 29624, 423956, 6183400, 91673594, ...]; ...
%o A128325 (PARI) {T(n,k)=local(A=vector(n+k+3,m,1+x+x*O(x^(n+k)))); for(i=1,n+k+3,for(j=1,n+k+1,N=n+k+2-j; A[N]=1+x/(1-x*sum(m=2,N+2,A[m]+x*O(x^(n+k))))));Vec(A[n+1])[k+1]}
%Y A128325 Cf. A030266 (row 0), A128326 (row 1), A128327 (row 2), A128328 (row 3), A128329 (main diagonal); A128330 (variant).
%K A128325 nonn,tabl
%O A128325 0,6
%A A128325 _Paul D. Hanna_, Mar 11 2007