cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128392 A126988^12 * A000594.

This page as a plain text file.
%I A128392 #9 Sep 20 2019 08:08:37
%S A128392 1,0,288,-1736,4890,0,-16660,44576,-103869,0,534744,-499968,-577582,0,
%T A128392 1408320,2507344,-6905730,0,10661648,-8489040,-4798080,0,18643548,
%U A128392 12837888,-25207475,0,-77183496,28921760,128406978,0,-52842796,-151328128,154006272,0,-81467400
%N A128392 A126988^12 * A000594.
%C A128392 Conjecture: Given A126988^k, k any positive integer, A128392 is the only sequence in the infinite set with zeros.
%C A128392 Each application of A126988 corresponds to the Dirichlet convolution of the natural numbers with the sequence on the right. Since both Ramanujan's tau function A000594 and the natural numbers are multiplicative, the resulting sequence will also be multiplicative. - _Andrew Howroyd_, Aug 03 2018
%H A128392 Andrew Howroyd, <a href="/A128392/b128392.txt">Table of n, a(n) for n = 1..1000</a>
%F A128392 A126988 as an infinite lower triangular matrix, * A000594.
%t A128392 nmax = 40;
%t A128392 M = Table[If[Mod[n, m] == 0, n/m, 0], {n, 1, nmax}, {m, 1, nmax}];
%t A128392 MatrixPower[M, 12].RamanujanTau[Range[nmax]] (* _Jean-François Alcover_, Sep 20 2019 *)
%o A128392 (PARI) seq(n, k=12)={my(u=vector(n,n,n), v=vector(n,n,ramanujantau(n))); for(i=1, k, v=dirmul(u,v)); v} \\ _Andrew Howroyd_, Aug 03 2018
%Y A128392 Cf. A126988, A000594, A128378, A128379, A128380, A128381, A128391.
%K A128392 sign,mult
%O A128392 1,3
%A A128392 _Gary W. Adamson_, Feb 28 2007
%E A128392 Terms a(11) and beyond from _Andrew Howroyd_, Aug 03 2018