This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128434 #8 Feb 16 2025 08:33:04 %S A128434 1,1,1,1,2,1,1,9,9,1,1,64,8,64,1,1,625,625,625,625,1,1,7776,243,16, %T A128434 243,7776,1,1,117649,117649,117649,117649,117649,117649,1,1,2097152, %U A128434 16384,2097152,128,2097152,16384,2097152,1,1,43046721,43046721,6561,43046721,43046721,6561,43046721,43046721,1 %N A128434 Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433. %H A128434 G. C. Greubel, <a href="/A128434/b128434.txt">Rows n = 0..50 of the triangle, flattened</a> %H A128434 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernsteinPolynomial.html">Bernstein Polynomial</a> %F A128434 A128433(n,k)/T(n,k) = binomial(n,k) * k^k * (n-k)^(n-k) / n^n. %F A128434 For n>0: Sum_{k=0..n} A128433(n,k)/T(n,k) = A090878(n)/A036505(n-1); %F A128434 T(n, n-k) = T(n,k). %F A128434 T(n, 0) = T(n, n) = 1. %F A128434 for n>0: A128433(n,1)/T(n,1) = A000312(n-1)/A000169(n). %e A128434 Triangle begins as: %e A128434 1; %e A128434 1, 1; %e A128434 1, 2, 1; %e A128434 1, 9, 9, 1; %e A128434 1, 64, 8, 64, 1; %e A128434 1, 625, 625, 625, 625, 1; %e A128434 1, 7776 243, 16, 243, 7776, 1; %e A128434 1, 117649, 117649, 117649, 117649, 117649, 117649, 1; %e A128434 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1; %t A128434 B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n]; %t A128434 T[n_, k_]= Denominator[B[n, k]]; %t A128434 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 19 2021 *) %o A128434 (Sage) %o A128434 def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n %o A128434 def T(n,k): return denominator(B(n,k)) %o A128434 flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Jul 19 2021 %Y A128434 Cf. A000169, A000312, A036505, A090878, A128433. %K A128434 nonn,tabl,frac %O A128434 0,5 %A A128434 _Reinhard Zumkeller_, Mar 03 2007