cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128437 a(n) = floor((numerator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

This page as a plain text file.
%I A128437 #21 Sep 28 2021 04:07:16
%S A128437 1,1,3,6,27,8,51,95,792,738,7610,7168,88153,83695,79717,152284,
%T A128437 2478954,793016,14489252,2791756,898002,867872,19318117,56159289,
%U A128437 1362100898,1322913164,11575416740,11264449603,318174017634,310156094338
%N A128437 a(n) = floor((numerator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.
%C A128437 Numerator of H(n) is a(n)*n + A126083(n).
%H A128437 Amiram Eldar, <a href="/A128437/b128437.txt">Table of n, a(n) for n = 1..2310</a>
%e A128437 a(6) = 8 because H(6) = 49/20 and floor(49/6) = 8.
%p A128437 H:=n->sum(1/k,k=1..n): a:=n->floor(numer(H(n))/n): seq(a(n),n=1..35); # _Emeric Deutsch_, Mar 22 2007
%t A128437 seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Numerator[s]/n]], {n, 1, 30}]; seq (* _Amiram Eldar_, Dec 01 2020 *)
%o A128437 (PARI) a(n) = numerator(sum(k=1, n, 1/k))\n; \\ _Michel Marcus_, Feb 01 2019
%o A128437 (Python)
%o A128437 from sympy import harmonic
%o A128437 def A128437(n): return harmonic(n).p//n # _Chai Wah Wu_, Sep 27 2021
%Y A128437 Cf. A128438, A001008, A126083.
%K A128437 nonn
%O A128437 1,3
%A A128437 _Leroy Quet_, Mar 03 2007
%E A128437 More terms from _Emeric Deutsch_, Mar 22 2007