This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128437 #21 Sep 28 2021 04:07:16 %S A128437 1,1,3,6,27,8,51,95,792,738,7610,7168,88153,83695,79717,152284, %T A128437 2478954,793016,14489252,2791756,898002,867872,19318117,56159289, %U A128437 1362100898,1322913164,11575416740,11264449603,318174017634,310156094338 %N A128437 a(n) = floor((numerator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number. %C A128437 Numerator of H(n) is a(n)*n + A126083(n). %H A128437 Amiram Eldar, <a href="/A128437/b128437.txt">Table of n, a(n) for n = 1..2310</a> %e A128437 a(6) = 8 because H(6) = 49/20 and floor(49/6) = 8. %p A128437 H:=n->sum(1/k,k=1..n): a:=n->floor(numer(H(n))/n): seq(a(n),n=1..35); # _Emeric Deutsch_, Mar 22 2007 %t A128437 seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Numerator[s]/n]], {n, 1, 30}]; seq (* _Amiram Eldar_, Dec 01 2020 *) %o A128437 (PARI) a(n) = numerator(sum(k=1, n, 1/k))\n; \\ _Michel Marcus_, Feb 01 2019 %o A128437 (Python) %o A128437 from sympy import harmonic %o A128437 def A128437(n): return harmonic(n).p//n # _Chai Wah Wu_, Sep 27 2021 %Y A128437 Cf. A128438, A001008, A126083. %K A128437 nonn %O A128437 1,3 %A A128437 _Leroy Quet_, Mar 03 2007 %E A128437 More terms from _Emeric Deutsch_, Mar 22 2007