This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128440 #31 Nov 14 2022 09:01:55 %S A128440 1,3,2,4,5,4,6,7,8,6,8,10,12,13,11,9,13,16,20,22,17,11,15,21,27,33,35, %T A128440 29,12,18,25,34,44,53,58,46,14,20,29,41,55,71,87,93,76,16,23,33,47,66, %U A128440 89,116,140,152,122,17,26,38,54,77,107,145,187,228,245,199 %N A128440 Array T(n,k) = floor(k*t^n) where t = golden ratio = (1 + sqrt(5))/2, read by descending antidiagonals. %C A128440 Row 1 = Lower Wythoff sequence = A000201; Row 2 = Upper Wythoff sequence = A001950; Column 1 = A014217 (after first term); T(n,n) = A128440(n). Every positive integer occurs exactly once in the first two rows. %C A128440 Conjecture: rows 2n-1 and 2n are disjoint for every positive integer n. - _Clark Kimberling_, Nov 11 2022 %C A128440 Stronger conjecture: for any positive integer n, if the numbers in rows 2n-1 and 2n are jointly arranged in increasing order, and each number is replaced by its position in the ordering, then the resulting two rows are identical to the first two rows. - _Clark Kimberling_, Nov 13 2022 %H A128440 Michel Marcus, <a href="/A128440/b128440.txt">Table of n, a(n) for n = 1..5050</a> (Antidiagonals n=1..100 of array, flattened). %F A128440 T(k,n) = k*F(n-1) + floor(k*t*F(n)), where F=A000045, the Fibonacci numbers. %e A128440 Corner: %e A128440 1 3 4 6 8 9 11 12 %e A128440 2 5 7 10 13 15 18 20 %e A128440 4 8 12 16 21 25 29 33 %e A128440 6 13 20 27 34 41 47 54 %e A128440 11 22 33 44 55 66 77 88 %e A128440 17 35 53 71 89 107 125 143 %e A128440 29 58 87 116 145 174 203 232 %e A128440 46 93 140 187 234 281 328 375 %t A128440 r = (1 + Sqrt[5])/2; t[k_, n_] := Floor[n*r^k]; %t A128440 Grid[Table[t[k, n], {k, 1, 10}, {n, 1, 20}]] %t A128440 (* _Clark Kimberling_, Nov 11 2022 *) %o A128440 (PARI) T(n,k) = floor(k*quadgen(5)^n); %o A128440 matrix(7, 7, n, k, T(n,k)) \\ _Michel Marcus_, Nov 14 2022 %Y A128440 Cf. A000045, A001622, A000201, A001950, A128439, A358359. %K A128440 nonn,tabl %O A128440 1,2 %A A128440 _Clark Kimberling_, Mar 03 2007