cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128520 q-inverse of x-x^2-x^3. Coefficients of a solution to the functional equation x = f(x) - f(x) f(q x) - f(x) f(q x) f(q^2 x).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 2, 3, 1, 6, 8, 8, 7, 3, 5, 1, 8, 18, 21, 28, 17, 23, 14, 11, 5, 8, 1, 10, 32, 50, 73, 73, 77, 79, 58, 57, 44, 39, 22, 18, 8, 13, 1, 12, 50, 103, 166, 221, 238, 289, 256, 269, 226, 231, 176, 166, 113, 119, 74, 62, 36, 29, 13, 21, 1, 14, 72, 188, 347, 545, 680, 861
Offset: 1

Views

Author

Brian Drake, Mar 06 2007

Keywords

Comments

The n-th row has binomial(n-1,2)+1 entries for n>=1. Each 1 starts a new row.
The last entry in the n-th row is the Fibonacci number F(n) = A000045(n). The second to last entry is F(n-1). The third from the end is the Lucas number L(n-1) = A000032(n-1).
The first entry in the n-th row is 1: A000012. The second entry is 2(n-2) = A005843(n-2). The third entry is 2(n-3)^2 = A001105(n-3).
The n-th row sum is A001002(n-1).

Examples

			1; 1; 1, 2; 1, 4, 2, 3; 1, 6, 8, 8, 7, 3, 5; 1, 8, 18, 21, 28, 17, 23, 14, 11, 5, 8; ...
a(4,1)=1, a(4,2)=4, a(4,3)=2, a(4,4)=3. f_4(q) = q^3 + 4 q^4 + 2 q^5 + 3 q^6. g_4(q) = 1 + 4 q + 2 q^2 + 3 q^3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n)local i, j; option remember; if n=1 then 1 else add(q^i*a(i)*a(n-i), i=1..n-1) + add(a(i) *add(q^(2*n-2*i-j)*a(j)*a(n-i-j), j=1..n-i-1), i=1..n-2); fi; expand(%); sort(%); end;
  • Mathematica
    g[1]=1; g[n_]:=g[n]=Expand[Sum[q^(i-1)g[i]g[n-i],{i,1,n-1}]+Sum[q^(2i+j-2)g[i]g[j]g[n-i-j],{i,1,n-2},{j,1,n-i-1}]]; a[n_,i_]:=Coefficient[g[n],q,i-1]

Formula

Let a(n,i) be the i-th entry in the n-th row, for n >= 1 and 1 <= i <= binomial(n-1,2)+1. Let f_n(q) = Sum_{i=1..binomial(n-1,2)+1} a(n,i) q^(n+i-2) and f(x) = Sum_{n>=1} f_n(q) x^n. Then f satisfies x = f(x) - f(x) f(q x) - f(x) f(q x) f(q^2 x).
The functions f_n satisfy the recurrence f_1 = 1, f_n = Sum_{i=1..n-1}(q^i f_i f_{n-i}) + Sum_{i=1..n-2}( f_i Sum_{j=1..n-i-1}(q^(2i+j) f_j f_{n-i-j})).
Equivalently, let g_n(q) = f_n(q)/q^(n-1) = Sum_{i=0..binomial(n-1,2)} a(n,i) q^(i-2) and g(x) = q f(x/q) = Sum_{n>=1} g_n(q) x^n. Then g satisfies q^2 x = q^2 g(x) - q g(x) g(q x) - g(x) g(q x) g(q^2 x). The functions g_n satisfy g_1 = 1, g_n = Sum_{i=1..n-1} (q^(i-1) g_i g_{n-i}) + Sum_{i=1..n-2} Sum_{j=1..n-i-1} (q^(2i+j-2) g_i g_j g_{n-i-j}).

Extensions

Edited by Dean Hickerson, Mar 09 2007