cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128532 a(n) = denominator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...r(n)] equals the n-th Fibonacci number, for every positive integer n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 18, 325, 1512, 14365, 349272, 21734245, 276623424, 6933892901, 577589709312, 492757099009565, 16532350249637376, 1086038875887212525, 1240124656925798848512, 1450308695702968720107785
Offset: 1

Views

Author

Leroy Quet, Mar 08 2007

Keywords

Examples

			The 5th Fibonacci number = 5 = 1 +1/(1 +1/(-2 +1/(3/2 -3/10))).
The 6th Fibonacci number = 8 = 1 +1/(1 +1/(-2 +1/(3/2 +1/(-10/3 +5/6)))).
		

Crossrefs

Cf. A128531.

Programs

  • Maple
    L2cfrac := proc(L,targ) local a,i; a := targ ; for i from 1 to nops(L) do a := 1/(a-op(i,L)) ; od: end: A128532 := proc(nmax) local b,n,bnxt; b := [1] ; for n from nops(b)+1 to nmax do bnxt := L2cfrac(b,combinat[fibonacci](n+1)) ; b := [op(b),bnxt] ; od: [seq( denom(b[i]),i=1..nops(b))] ; end: A128532(22) ; # R. J. Mathar, Oct 09 2007

Formula

For n>=4, r(n) = -F(n)/(F(n-3) r(n-1)), where F(n) is the n-th Fibonacci number.

Extensions

More terms from R. J. Mathar, Oct 09 2007