This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128541 #9 Feb 18 2022 22:21:08 %S A128541 1,1,1,0,1,2,0,0,2,3,0,0,0,3,5,0,0,0,0,5,8,0,0,0,0,0,8,13,0,0,0,0,0,0, %T A128541 13,21,0,0,0,0,0,0,0,21,34,0,0,0,0,0,0,0,0,34,55,0,0,0,0,0,0,0,0,0,55, %U A128541 89,0,0,0,0,0,0,0,0,0,0,89,144,0,0,0,0,0,0,0,0,0,0,0,144,233 %N A128541 Triangle, A097806 * A127647, read by rows. %C A128541 Row sums = A000045 starting (1, 2, 3, 5, 8, 13, ...). A128540 = A127647 * A097806. %H A128541 G. C. Greubel, <a href="/A128541/b128541.txt">Rows n = 0..100 of triangle, flattened</a> %F A128541 A097806 * A127647 as infinite lower triangular matrices. %e A128541 First few rows of the triangle: %e A128541 1; %e A128541 1, 1; %e A128541 0, 1, 2; %e A128541 0, 0, 2, 3; %e A128541 0, 0, 0, 3, 5; %e A128541 0, 0, 0, 0, 5, 8; %e A128541 ... %t A128541 Table[If[k==n, Fibonacci[n+1], If[k==n-1, Fibonacci[n], 0]], {n, 0, 15}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jul 11 2019 *) %o A128541 (PARI) T(n,k) = if(k==n, fibonacci(n+1), if(k==n-1, fibonacci(n), 0)); \\ _G. C. Greubel_, Jul 11 2019 %o A128541 (Magma) [k eq n select Fibonacci(n+1) else k eq n-1 select Fibonacci(n) else 0: k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jul 11 2019 %o A128541 (Sage) %o A128541 def T(n, k): %o A128541 if (k==n): return fibonacci(n+1) %o A128541 elif (k==n-1): return fibonacci(n) %o A128541 else: return 0 %o A128541 [[T(n, k) for k in (0..n)] for n in (0..15)] # _G. C. Greubel_, Jul 11 2019 %Y A128541 Cf. A000045, A097806, A127647, A128540. %K A128541 nonn,tabl %O A128541 0,6 %A A128541 _Gary W. Adamson_, Mar 10 2007 %E A128541 More terms added by _G. C. Greubel_, Jul 11 2019