cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128545 Triangle, read by rows, where T(n,k) is the coefficient of q^(n*k) in the q-binomial coefficient [2*n, n] for n >= k >= 0.

This page as a plain text file.
%I A128545 #17 Jun 02 2020 01:15:43
%S A128545 1,1,1,1,2,1,1,3,3,1,1,5,8,5,1,1,7,18,18,7,1,1,11,39,58,39,11,1,1,15,
%T A128545 75,155,155,75,15,1,1,22,141,383,526,383,141,22,1,1,30,251,867,1555,
%U A128545 1555,867,251,30,1,1,42,433,1860,4192,5448,4192,1860,433,42,1
%N A128545 Triangle, read by rows, where T(n,k) is the coefficient of q^(n*k) in the q-binomial coefficient [2*n, n] for n >= k >= 0.
%C A128545 Variant of A047812 (Parker's partition triangle).
%C A128545 Column 1 equals the number of partitions of n: A000041(n) is the coefficient of q^n in the central q-binomial coefficient [2*n, n] for n > 0.
%H A128545 Paul D. Hanna, <a href="/A128545/b128545.txt">Rows n = 0..45, flattened.</a>
%F A128545 Row sums equal the row sums of triangle A123610: A123611(n) = 2*A047996(2*n,n) = 2*A003239(n) for n > 0, where A047996 is the triangle of circular binomial coefficients and A003239(n) = number of rooted planar trees with n non-root nodes.
%e A128545 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
%e A128545   1;
%e A128545   1,  1;
%e A128545   1,  2,   1;
%e A128545   1,  3,   3,    1;
%e A128545   1,  5,   8,    5,    1;
%e A128545   1,  7,  18,   18,    7,    1;
%e A128545   1, 11,  39,   58,   39,   11,    1;
%e A128545   1, 15,  75,  155,  155,   75,   15,    1;
%e A128545   1, 22, 141,  383,  526,  383,  141,   22,   1;
%e A128545   1, 30, 251,  867, 1555, 1555,  867,  251,  30,  1;
%e A128545   1, 42, 433, 1860, 4192, 5448, 4192, 1860, 433, 42, 1;
%e A128545   ...
%o A128545 (PARI) T(n,k)=if(n<k || k<0,0,if(n==0,1,polcoeff(prod(j=n+1,2*n,1-q^j)/prod(j=1,n,1-q^j),n*k,q)))
%Y A128545 Cf. A003239, A047812 (variant), A047996, A123610, A123611 (row sums).
%Y A128545 Cf. A000041 (column 1), A128552 (column 2), A128553 (column 3), A128554 (column 4).
%K A128545 nonn,tabl
%O A128545 0,5
%A A128545 _Paul D. Hanna_, Mar 10 2007