cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128570 Rectangular table, read by antidiagonals, where the g.f. of row n, R(x,n), satisfies: R(x,n) = 1 + (n+1)*x*R(x,n+1)^2 for n>=0.

This page as a plain text file.
%I A128570 #8 Mar 19 2016 09:35:28
%S A128570 1,1,1,1,2,4,1,3,12,28,1,4,24,114,276,1,5,40,288,1440,3480,1,6,60,580,
%T A128570 4440,22368,53232,1,7,84,1020,10560,82080,409248,955524,1,8,112,1638,
%U A128570 21420,226560,1752000,8585088,19672320,1,9,144,2464,38976,523320,5532960,42178800,202733760,456803328,1,10,180,3528,65520,1068480,14399280,150570240,1127335680,5317663680,11810032896,1,11,220,4860,103680,1991808,32716992,437433780,4501422240,33073099200,153345634560,336463895808
%N A128570 Rectangular table, read by antidiagonals, where the g.f. of row n, R(x,n), satisfies: R(x,n) = 1 + (n+1)*x*R(x,n+1)^2 for n>=0.
%C A128570 Row r > 0 is asymptotic to 2^(2*r) * n^r * A128318(n) / (3^r * r!). - _Vaclav Kotesovec_, Mar 19 2016
%H A128570 Paul D. Hanna, <a href="/A128570/b128570.txt">Table of n, a(n) for n = 0..527</a>
%e A128570 Row g.f.s satisfy: R(x,0) = 1 + x*R(x,1)^2, R(x,1) = 1 + 2x*R(x,2)^2,
%e A128570 R(x,2) = 1 + 3x*R(x,3)^2, R(x,3) = 1 + 4x*R(x,4)^2, ...
%e A128570 where the initial rows begin:
%e A128570 R(x,0):[1,1,4,28,276,3480,53232,955524,19672320,456803328,...];
%e A128570 R(x,1):[1,2,12,114,1440,22368,409248,8585088,202733760,...];
%e A128570 R(x,2):[1,3,24,288,4440,82080,1752000,42178800,1127335680,...];
%e A128570 R(x,3):[1,4,40,580,10560,226560,5532960,150570240,4501422240,...];
%e A128570 R(x,4):[1,5,60,1020,21420,523320,14399280,437433780,14479664640,...];
%e A128570 R(x,5):[1,6,84,1638,38976,1068480,32716992,1098069504,39896236800,...];
%e A128570 R(x,6):[1,7,112,2464,65520,1991808,67189248,2469837888,97765355520,..];
%e A128570 R(x,7):[1,8,144,3528,103680,3461760,127569600,5098406400,...];
%e A128570 R(x,8):[1,9,180,4860,156420,5690520,227470320,9821970180,...];
%e A128570 R(x,9):[1,10,220,6490,227040,8939040,385265760,17875608960,..].
%o A128570 (PARI) {T(n,k)=local(A=1+(n+k+1)*x); for(j=0,k,A=1+(n+k+1-j)*x*A^2 +x*O(x^k));polcoeff(A,k)}
%o A128570 for(n=0, 12, for(k=0, 10, print1(T(n, k), ", ")); print(""))
%Y A128570 Rows: A128318, A128571, A128572, A128573, A128574, A128575, A128576; A128577 (square of row 0), A128578 (main diagonal), A128579 (antidiagonal sums).
%Y A128570 Cf A268652.
%K A128570 nonn,tabl
%O A128570 0,5
%A A128570 _Paul D. Hanna_, Mar 11 2007