This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128570 #8 Mar 19 2016 09:35:28 %S A128570 1,1,1,1,2,4,1,3,12,28,1,4,24,114,276,1,5,40,288,1440,3480,1,6,60,580, %T A128570 4440,22368,53232,1,7,84,1020,10560,82080,409248,955524,1,8,112,1638, %U A128570 21420,226560,1752000,8585088,19672320,1,9,144,2464,38976,523320,5532960,42178800,202733760,456803328,1,10,180,3528,65520,1068480,14399280,150570240,1127335680,5317663680,11810032896,1,11,220,4860,103680,1991808,32716992,437433780,4501422240,33073099200,153345634560,336463895808 %N A128570 Rectangular table, read by antidiagonals, where the g.f. of row n, R(x,n), satisfies: R(x,n) = 1 + (n+1)*x*R(x,n+1)^2 for n>=0. %C A128570 Row r > 0 is asymptotic to 2^(2*r) * n^r * A128318(n) / (3^r * r!). - _Vaclav Kotesovec_, Mar 19 2016 %H A128570 Paul D. Hanna, <a href="/A128570/b128570.txt">Table of n, a(n) for n = 0..527</a> %e A128570 Row g.f.s satisfy: R(x,0) = 1 + x*R(x,1)^2, R(x,1) = 1 + 2x*R(x,2)^2, %e A128570 R(x,2) = 1 + 3x*R(x,3)^2, R(x,3) = 1 + 4x*R(x,4)^2, ... %e A128570 where the initial rows begin: %e A128570 R(x,0):[1,1,4,28,276,3480,53232,955524,19672320,456803328,...]; %e A128570 R(x,1):[1,2,12,114,1440,22368,409248,8585088,202733760,...]; %e A128570 R(x,2):[1,3,24,288,4440,82080,1752000,42178800,1127335680,...]; %e A128570 R(x,3):[1,4,40,580,10560,226560,5532960,150570240,4501422240,...]; %e A128570 R(x,4):[1,5,60,1020,21420,523320,14399280,437433780,14479664640,...]; %e A128570 R(x,5):[1,6,84,1638,38976,1068480,32716992,1098069504,39896236800,...]; %e A128570 R(x,6):[1,7,112,2464,65520,1991808,67189248,2469837888,97765355520,..]; %e A128570 R(x,7):[1,8,144,3528,103680,3461760,127569600,5098406400,...]; %e A128570 R(x,8):[1,9,180,4860,156420,5690520,227470320,9821970180,...]; %e A128570 R(x,9):[1,10,220,6490,227040,8939040,385265760,17875608960,..]. %o A128570 (PARI) {T(n,k)=local(A=1+(n+k+1)*x); for(j=0,k,A=1+(n+k+1-j)*x*A^2 +x*O(x^k));polcoeff(A,k)} %o A128570 for(n=0, 12, for(k=0, 10, print1(T(n, k), ", ")); print("")) %Y A128570 Rows: A128318, A128571, A128572, A128573, A128574, A128575, A128576; A128577 (square of row 0), A128578 (main diagonal), A128579 (antidiagonal sums). %Y A128570 Cf A268652. %K A128570 nonn,tabl %O A128570 0,5 %A A128570 _Paul D. Hanna_, Mar 11 2007