cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128611 Number of Z-convex polyominoes with semiperimeter n.

Original entry on oeis.org

0, 0, 1, 2, 7, 28, 116, 484, 2022, 8448, 35290, 147376, 615228, 2567060, 10704976, 44611804, 185780308, 773060804, 3214225836, 13352979316, 55426067494, 229870371888, 952548347122, 3943943111920, 16316243701350, 67447113649312, 278592165886198, 1149863118820584, 4742473257979906, 19545876370622104, 80502059920697442
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Crossrefs

Programs

  • Maple
    d:=(1-2*t-sqrt(1-4*t))/2:
    t1:=
    2*t^4*(1-2*t)^2*d/( (1-4*t)^2*(1-3*t)*(1-t) )
    + t^2*(1-6*t+10*t^2-2*t^3-t^4)/( (1-4*t)*(1-3*t)*(1-t) ):
    series(t1,t,120):
    seriestolist(%); # N. J. A. Sloane, Oct 02 2011
  • Mathematica
    gf = 2 t^4 (1-2t)^2 d/((1-4t)^2 (1-3t)(1-t)) + t^2 (1-6t+10t^2-2t^3-t^4)/ ((1-4t)(1-3t)(1-t)) /. d -> (1-2t-Sqrt[1-4t])/2;
    CoefficientList[gf + O[t]^31, t] (* Jean-François Alcover, Aug 17 2018 *)

Formula

The Duchi paper has a g.f.
Asymptotically, a(n) ~ n/24 * 4^n.
G.f.: Let d:=(1-2*t-sqrt(1-4*t))/2; then g.f. is 2*t^4*(1-2*t)^2*d/( (1-4*t)^2*(1-3*t)*(1-t) ) + t^2*(1-6*t+10*t^2-2*t^3-t^4)/( (1-4*t)*(1-3*t)*(1-t) ). - N. J. A. Sloane, Oct 02 2011
(-960+384*n)*a(n)+(1760-992*n)*a(n+1)+(-924+984*n)*a(2+n)+(64-490*n)*a(n+3)+(82+131*n)*a(n+4)+(-24-18*n)*a(n+5)+(2+n)*a(n+6), a(0) = 0. - Robert Israel, Aug 17 2018