A128611 Number of Z-convex polyominoes with semiperimeter n.
0, 0, 1, 2, 7, 28, 116, 484, 2022, 8448, 35290, 147376, 615228, 2567060, 10704976, 44611804, 185780308, 773060804, 3214225836, 13352979316, 55426067494, 229870371888, 952548347122, 3943943111920, 16316243701350, 67447113649312, 278592165886198, 1149863118820584, 4742473257979906, 19545876370622104, 80502059920697442
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1658
- Adrien Boussicault, Simone Rinaldi, and Samanta Socci, The number of directed k-convex polyominoes, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages. See page 2.
- E. Duchi, S. Rinaldi and G. Schaeffer, The number of Z-convex polyominoes, arXiv:math/0602124 [math.CO], 2006.
Programs
-
Maple
d:=(1-2*t-sqrt(1-4*t))/2: t1:= 2*t^4*(1-2*t)^2*d/( (1-4*t)^2*(1-3*t)*(1-t) ) + t^2*(1-6*t+10*t^2-2*t^3-t^4)/( (1-4*t)*(1-3*t)*(1-t) ): series(t1,t,120): seriestolist(%); # N. J. A. Sloane, Oct 02 2011
-
Mathematica
gf = 2 t^4 (1-2t)^2 d/((1-4t)^2 (1-3t)(1-t)) + t^2 (1-6t+10t^2-2t^3-t^4)/ ((1-4t)(1-3t)(1-t)) /. d -> (1-2t-Sqrt[1-4t])/2; CoefficientList[gf + O[t]^31, t] (* Jean-François Alcover, Aug 17 2018 *)
Formula
The Duchi paper has a g.f.
Asymptotically, a(n) ~ n/24 * 4^n.
G.f.: Let d:=(1-2*t-sqrt(1-4*t))/2; then g.f. is 2*t^4*(1-2*t)^2*d/( (1-4*t)^2*(1-3*t)*(1-t) ) + t^2*(1-6*t+10*t^2-2*t^3-t^4)/( (1-4*t)*(1-3*t)*(1-t) ). - N. J. A. Sloane, Oct 02 2011
(-960+384*n)*a(n)+(1760-992*n)*a(n+1)+(-924+984*n)*a(2+n)+(64-490*n)*a(n+3)+(82+131*n)*a(n+4)+(-24-18*n)*a(n+5)+(2+n)*a(n+6), a(0) = 0. - Robert Israel, Aug 17 2018