This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128618 #13 Mar 22 2024 17:41:51 %S A128618 1,0,1,1,0,2,0,1,0,3,1,0,2,0,5,0,1,0,3,0,8,1,0,2,0,5,0,13,0,1,0,3,0,8, %T A128618 0,21,1,0,2,0,5,0,13,0,34,0,1,0,3,0,8,0,21,0,55,1,0,2,0,5,0,13,0,34,0, %U A128618 89,0,1,0,3,0,8,0,21,0,55,0,144,1,0,2,0,5,0,13,0,34,0,89,0,233 %N A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices. %C A128618 This triangle is different from A128619, which is A128619 = A127647 * A128174. %H A128618 G. C. Greubel, <a href="/A128618/b128618.txt">Rows n = 1..100 of the triangle, flattened</a> %F A128618 By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,... %F A128618 Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums). %F A128618 From _G. C. Greubel_, Mar 17 2024: (Start) %F A128618 T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k). %F A128618 T(n, n) = A000045(n). %F A128618 T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n). %F A128618 Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1). %F A128618 Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1). %F A128618 Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) * A355020(floor((n-1)/2)). (End) %e A128618 First few rows of the triangle are: %e A128618 1; %e A128618 0, 1; %e A128618 1, 0, 2; %e A128618 0, 1, 0, 3; %e A128618 1, 0, 2, 0, 5; %e A128618 0, 1, 0, 3, 0, 8; %e A128618 1, 0, 2, 0, 5, 0, 13; %e A128618 0, 1, 0, 3, 0, 8, 0, 21; %e A128618 1, 0, 2, 0, 5, 0, 13, 0, 34; %e A128618 0, 1, 0, 3, 0, 8, 0, 21, 0, 55; %e A128618 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89; %e A128618 ... %t A128618 Table[Fibonacci[k]*Mod[n-k+1,2], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 17 2024 *) %o A128618 (Magma) [((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 17 2024 %o A128618 (SageMath) flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 17 2024 %Y A128618 Cf. A000045, A052952, A127647, A128174, A128619, A355020. %K A128618 nonn,tabl %O A128618 1,6 %A A128618 _Gary W. Adamson_, Mar 14 2007 %E A128618 a(6) corrected and more terms from _Georg Fischer_, May 30 2023