cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.

This page as a plain text file.
%I A128618 #13 Mar 22 2024 17:41:51
%S A128618 1,0,1,1,0,2,0,1,0,3,1,0,2,0,5,0,1,0,3,0,8,1,0,2,0,5,0,13,0,1,0,3,0,8,
%T A128618 0,21,1,0,2,0,5,0,13,0,34,0,1,0,3,0,8,0,21,0,55,1,0,2,0,5,0,13,0,34,0,
%U A128618 89,0,1,0,3,0,8,0,21,0,55,0,144,1,0,2,0,5,0,13,0,34,0,89,0,233
%N A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.
%C A128618 This triangle is different from A128619, which is A128619 = A127647 * A128174.
%H A128618 G. C. Greubel, <a href="/A128618/b128618.txt">Rows n = 1..100 of the triangle, flattened</a>
%F A128618 By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,...
%F A128618 Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums).
%F A128618 From _G. C. Greubel_, Mar 17 2024: (Start)
%F A128618 T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k).
%F A128618 T(n, n) = A000045(n).
%F A128618 T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n).
%F A128618 Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1).
%F A128618 Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1).
%F A128618 Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) *  A355020(floor((n-1)/2)). (End)
%e A128618 First few rows of the triangle are:
%e A128618   1;
%e A128618   0, 1;
%e A128618   1, 0, 2;
%e A128618   0, 1, 0, 3;
%e A128618   1, 0, 2, 0, 5;
%e A128618   0, 1, 0, 3, 0, 8;
%e A128618   1, 0, 2, 0, 5, 0, 13;
%e A128618   0, 1, 0, 3, 0, 8,  0, 21;
%e A128618   1, 0, 2, 0, 5, 0, 13,  0, 34;
%e A128618   0, 1, 0, 3, 0, 8,  0, 21,  0, 55;
%e A128618   1, 0, 2, 0, 5, 0, 13,  0, 34,  0, 89;
%e A128618   ...
%t A128618 Table[Fibonacci[k]*Mod[n-k+1,2], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 17 2024 *)
%o A128618 (Magma) [((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 17 2024
%o A128618 (SageMath) flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 17 2024
%Y A128618 Cf. A000045, A052952, A127647, A128174, A128619, A355020.
%K A128618 nonn,tabl
%O A128618 1,6
%A A128618 _Gary W. Adamson_, Mar 14 2007
%E A128618 a(6) corrected and more terms from _Georg Fischer_, May 30 2023