This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128622 #7 Mar 14 2024 16:39:36 %S A128622 1,1,2,3,2,3,3,4,3,4,5,4,5,4,5,5,6,5,6,5,6,7,6,7,6,7,6,7,7,8,7,8,7,8, %T A128622 7,8,9,8,9,8,9,8,9,8,9,9,10,9,10,9,10,9,10,9,10,11,10,11,10,11,10,11, %U A128622 10,11,10,11,11,12,11,12,11,12,11,12,11,12,11,12 %N A128622 Triangle T(n, k) = A128064(unsigned) * A128174, read by rows. %H A128622 G. C. Greubel, <a href="/A128622/b128622.txt">Rows n = 1..100 of the triangle, flattened</a> %F A128622 T(n, k) = abs(A128064(n,k) * A128174(n, k), as infinite lower triangular matrices. %F A128622 Sum_{k=1..n} T(n, k) = A014848(n) (row sums). %F A128622 From _G. C. Greubel_, Mar 14 2024: (Start) %F A128622 T(n, k) = n - (1 - (-1)^(n+k))/2 = n - (n+k mod 2). %F A128622 T(n, 1) = A109613(n+1). %F A128622 T(n, n) = A000027(n). %F A128622 T(2*n-1, n) = A042963(n). %F A128622 T(3*n-1, n) = A016777(n+1). %F A128622 T(4*n-3, n) = A047461(n). %F A128622 Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A319556(n). %F A128622 Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A000326(floor((n+1)/2)). %F A128622 Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A123684(floor((n+1)/2)). (End) %e A128622 First few rows of the triangle are: %e A128622 1; %e A128622 1, 2; %e A128622 3, 2, 3; %e A128622 3, 4, 3, 4; %e A128622 5, 4, 5, 4, 5; %e A128622 5, 6, 5, 6, 5, 6; %e A128622 7, 6, 7, 6, 7, 6, 7; %e A128622 ... %t A128622 Table[n - Mod[n+k,2], {n,16}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 14 2024 *) %o A128622 (Magma) [n - ((n+k) mod 2): k in [1..n], n in [1..16]]; // _G. C. Greubel_, Mar 14 2024 %o A128622 (SageMath) flatten([[n - ((n+k)%2) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 14 2024 %Y A128622 Cf. A000027, A016777, A042963, A047461, A109613, A128064, A128174. %Y A128622 Cf. A000326 (diagonal sums), A014848 (row sums), A319556 (alternating row sums). %K A128622 nonn,tabl,easy %O A128622 1,3 %A A128622 _Gary W. Adamson_, Mar 14 2007 %E A128622 More terms added by _G. C. Greubel_, Mar 14 2024