This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A128626 #7 Feb 06 2019 00:25:07 %S A128626 1,4,1,9,20,1,16,140,74,1,25,572,1136,224,1,36,1785,8866,6685,604,1, %T A128626 49,4600,47152,88380,31851,1492,1,64,10416,194282,737059,665542, %U A128626 130808,3458,1,81,21320,665769,4512584,8211274,4105870,479826,7602,1,100,40425 %N A128626 A triangular array distributing the values of sequence A072213 (cf. A115994). %H A128626 Nathaniel Johnston, <a href="/A128626/b128626.txt">Table of n, a(n) for n = 0..209</a> %e A128626 A115994 distributes the numeric partition sequence A000041 and A072213 records partition values for sequence A000290 (the squares). %e A128626 Therefore the table begins: %e A128626 1; %e A128626 4, 1; %e A128626 9, 20, 1; %e A128626 16, 140, 74, 1; %e A128626 25, 572, 1136, 224, 1; %e A128626 36, 1785, 8866, 6685, 604, 1; %e A128626 49, 4600, 47152, 88380, 31851, 1492, 1; %e A128626 ... %p A128626 nn:=8: g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..nn): gser:=series(g, q=0, nn^2+1): for n from 1 to nn do P[n]:=coeff(gser, q^(n^2)) od: for n from 1 to nn do seq(coeff(P[n], t^j), j=1..n); od; # _Nathaniel Johnston_, Apr 30 2011 %Y A128626 Cf. A000041, A000290, A115994. %K A128626 nonn,tabl %O A128626 0,2 %A A128626 _Alford Arnold_, Mar 15 2007